The cellular and molecular mechanisms of vertebrate lensdevelopment November 2014 Development 141(23):4432-4447 DOI: 10.1242/dev.107953 CC BY 3.0 https://www.researchgate.net/publication/268985222_The_cellular_and_molecular_mechanisms_of_vertebrate_lens_development#fullTextFileContent
Whole-mount in situ hybridization of E7.5 (A), E8.5 (B), E9.5 (C and D), E10.5 (E and F), and E11.5 mouse embryos (G and H). rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina Takahisa Furukawa *, Christine A Kozak †, Constance L Cepko *,‡ Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3088–3093. doi: 10.1073/pnas.94.7.3088 ”pax6 expression starts later than that of rax, suggesting that rax might be directly or indirectly upstream of pax6 in the series of events that lead to optic vesicle formation.” https://pmc.ncbi.nlm.nih.gov/articles/PMC20326/
RAX遺伝子破壊マウスでは眼の形成ができません。
An essential role for Rax in retina and neuroendocrine system development Yuki Muranishi, Koji Terada, Takahisa Furukawa First published: 24 April 2012 https://doi.org/10.1111/j.1440-169X.2012.01337.x DGD https://onlinelibrary.wiley.com/doi/10.1111/j.1440-169X.2012.01337.x
PAX6
眼の発生のマスター遺伝子の一つであるPAX6を欠損させたマウスでは眼が全くできなくなります。
Anophthalmia mouse mutant. a Head of a neonatal (P1) homozygous Pax6Aey11 mutant compared to a wild-type mouse (wt) at the same age. The absence of eyes in the mutant is obvious. The eyelids of neonatal mice are still closed (photography: Jana Löster†, unpublished). Mouse models for microphthalmia, anophthalmia and cataracts 27 March 2019 Volume 138, pages 1007–1018, (2019)https://link.springer.com/article/10.1007/s00439-019-01995-w
カエルの眼の発生に関わるマスター遺伝子の発現パターン
Specification of the vertebrate eye by a network of eye field transcription factors Michael E. Zuber, Gaia Gestri, Andrea S. Viczian, Giuseppina Barsacchi, William A. Harris Author and article information Development (2003) 130 (21): 5155–5167. https://journals.biologists.com/dev/article/130/21/5155/52150/Specification-of-the-vertebrate-eye-by-a-network
Figure 2. Expression of Bmp4 and BMP type-I receptor genes during early eye development. (A–F) In situ hybridization using an antisense riboprobe for Bmp4 on transverse sections of 10- (A) and 14- (B) somite-stage embryos, and on frontal sections of 18- (C), 22- (D), 27- (E), and ∼40-somite-stage (10.5 dpc) (F) embryos.
BMP4 is essential for lens induction in the mouse embryo Yasuhide Furuta and Brigid L.M. Hogan1 Genes & Dev. 1998. 12: 3764-3775 https://genesdev.cshlp.org/content/12/23/3764.full
Figure 3. The timing and intensity of FGF signalling controls the two-dimensional patterning of the lens. The PPR is first selected from the head ectoderm by active FGF signalling devoid of suppressive BMP and Wnt (a), before progressing further towards the LP fate in lieu of(~の代わりに◆instead of に近い意味) continuous FGF signalling (b). FGF next induces Frs2–Shp2-mediated Ras signalling modulated by NF1 to promote Pax6 expression and lens vesicle invagination (c), but FGF signalling must be suppressed by Spry to allow lens vesicle closure (d). During the subsequent lens maturation, FGF cooperates with PDGF to stimulate Notch signalling, which promotes lens epithelium proliferation (e). In lens fibre cells, FGF signalling also activates Ras to promote differentiation and recruit Ras and Rac GTPases via Crk/CrkL to promote cell elongation (f).
レンズの前後軸の決定に関わる分泌シグナル:WNTとFGF
Fig. 2. Diagram indicating how the ocular media and a gradient of FGF stimulation may determine antero-posterior patterns of lens cell behavior. Growth factor regulation of lens development F.J. Lovicu , J.W. McAvoy Developmental Biology Volume 280, Issue 1, 1 April 2005, Pages 1-14 https://www.sciencedirect.com/science/article/pii/S001216060500045X?via%3Dihub
Lhx2 links the intrinsic and extrinsic factors that control optic cup formation Sanghee Yun, Yukio Saijoh, Karla E. Hirokawa, Daniel Kopinke, L. Charles Murtaugh, Edwin S. Monuki, Edward M. Levine Author and article information Development (2009) 136 (23): 3895–3906. https://journals.biologists.com/dev/article/136/23/3895/43745/Lhx2-links-the-intrinsic-and-extrinsic-factors
FIGURE 4 | Early ocular morphogenesis. The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders July 2020 Frontiers in Cellular Neuroscience 14:265 DOI: 10.3389/fncel.2020.00265 License CC BY (A) Developmental pathways such as Wnt, BMP, and fibroblast growth factor (FGF) drive upregulation of eye-field transcription factors in the anterior neural plate, creating the specified region known as the “eye-field.”
3D Embryology of Pharyngeal arches, Pharyngeal Pouches, Pharyngeal clefts and Pharyngeal Apparatus MedicoVisual – Visual Medical Lectures チャンネル登録者数 4.69万人
Epithelial-Mesenchymal Transitions in Development and Disease Cell Volume 139, Issue 5p871-890November 25, 2009 https://www.cell.com/fulltext/S0092-8674%2809%2901419-6
Epithelial–mesenchymal transition and its transcription factors Biosci Rep. 2021 Dec 23;42(1):BSR20211754. doi: 10.1042/BSR20211754 https://pmc.ncbi.nlm.nih.gov/articles/PMC8703024/
Differential Role of Snail1 and Snail2 Zinc Fingers in E-cadherin Repression and Epithelial to Mesenchymal Transition* J Biol Chem. 2013 Dec 1;289(2):930–941. doi: 10.1074/jbc.M113.528026 https://pmc.ncbi.nlm.nih.gov/articles/PMC3887216/
During embryogenesis, epithelia are considered to be highly plastic and able to switch back and forth between epithelia and mesenchyme, via the processes of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET), respectively. https://www.jci.org/articles/view/39675
Epithelial to mesenchymal transition during gastrulation: An embryological view Yukiko Nakaya, Guojun Sheng First published: 25 November 2008 https://doi.org/10.1111/j.1440-169X.2008.01070.x Development, Growth and Differentiation (DGD)
発生における上皮間葉転換
Embryonic development depends on epithelial cells changing into migratory mesenchymal cells, and then changing back into epithelial cells when they reach their destination. These interlinked cellular dynamics, termed epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET), have long been recognized as fundamental processes that drive development [1]. https://biosignaling.biomedcentral.com/articles/10.1186/s12964-021-00761-8
The transition of epithelial to mesenchymal cells is not irreversible, as several rounds of EMT and MET are necessary for the final differentiation of specialized cell types and the acquisition of the complex three-dimensional structure of internal organs. Accordingly, these sequential rounds are referred to as primary, secondary, and tertiary EMT (Figure 1). (Cell Volume 139, Issue 5, 25 November 2009, Pages 871-890 Review Epithelial-Mesenchymal Transitions in Development and Disease)
Cellular plasticity is fundamental to embryonic development. The importance of cellular transitions in development is first apparent during gastrulation when the process of epithelial to mesenchymal transition transforms polarized epithelial cells into migratory mesenchymal cells that constitute the embryonic and extraembryonicmesoderm. https://cir.nii.ac.jp/crid/1364233269608738688
Thomas J. Carroll, Joo-Seop Park, Shigemi Hayashi, Arindam Majumdar, Andrew P. McMahon, Wnt9b Plays a Central Role in the Regulation of Mesenchymal to Epithelial Transitions Underlying Organogenesis of the Mammalian Urogenital System, Developmental Cell,Volume 9, Issue 2,2005,Pages 283-292,ISSN 1534-5807, https://doi.org/10.1016/j.devcel.2005.05.016.
レビュー論文
EMT programmes to normal and neoplastic epithelial stem cells.Nat Rev Cancer21, 325–338 (2021). Lambert, A.W., Weinberg, R.A. Linking https://doi.org/10.1038/s41568-021-00332-6
Prepubertal vulvovaginitis January 2018Journal of Nature and Science of Medicine 2(1) DOI:10.4103/JNSM.JNSM_33_18 License CC BY-NC-SA The majority of cases are due to nonspecific vulvovaginitis in which vaginal cultures will grow organisms considered to be part of the normal flora. The condition is easily managed with good perineal hygiene. In reluctant cases, oral antibiotics or local estrogen cream may be helpful.
The OSNA (One-Step Nucleic Acid Amplification) assay is a RT-PCR-based technique for detecting CK19 mRNA. It is a quantitative, fast, and standardised assay, and it has been validated for lymph node molecular analysis in breast and CRC [11,12,13].
A novel technique for pathological examination, OSNA, uses the reverse transcription loop-mediated isothermal amplification method to amplify CK19 mRNA.