[医学論文の種類]Editoral(エディトリアル)とは?

一口に論文と言っても、様々な種類があります。新しい発見を報告する「原著論文」(Original article)がなんといっても重要であり、これが研究者を評価する際の最重要項目になります。その分野の専門家であれば、領域の動向をまとめたReview Article(レビュー論文)を書くことも多いでしょう。Review Article の「review」と、論文査読{review)の「review」とは、全く別物ですので混同しないように。念のため。さて、医学論文ではEditorialという論文の形式もよく目にします。

医学においては、著書としての学術論文はその内容や様式により、基本的には原著症例報告総説短報告手紙文などにまとめて分類される。論説(Editorial)は学術論文の範疇からは除外される。(https://seiyogakuin.ac.jp/guide/criticism/doc/055.pdf)

これは、専門家が特定の分野に関して簡潔にまとめたものだそうです。

エディトリアルとは、現在重要視されている問題や、今後大きく議論されると予測されるトピックや研究に言及した論文を指します。‥ 雑誌に掲載された特定の論文内容や研究方法に言及する場合はあります。(巻頭辞(エディトリアル)の書き方について genius.jp.net)

特定の論文に関するコメントもEditorialに含まれるようです。

NEJM誌はEditorial、Lancet誌はCommentとしていますが、要は論文著者以外で当該分野に詳しい人が書く批評です。(医学論文の読み方(2) 西村多寿子のブログ)

編集後記」editorials は、医学学術誌のその号に掲載された様々な論文を批評した論文です。世界的に著名な学術誌では、論文ごとに editorial を掲載することが一般的で、その号に掲載された original articles を批評する editorials が掲載されます。(Menu 15 医学論文の抄読会を楽しく乗り切る方法 icrip.jp)

参考サイト

  1. New England Journal of Medicine (NEJM) Editorial検索
  2. Lancet Comments

免疫学 プライミングとは?

プライミングとは プライミングという現象が見られる例

免疫系を賦活するための予備刺激 少量のLPS処理によるpro-IL-1βの誘導,いわゆる“プライミング” (プライミング 実験医学online)

アレルギー反応は1)最初に遭遇したアレルゲンへの曝露時に生じる反応(感作あるいはプライミング相)と、2)感作を受けた後で獲得免疫系が誘導された後に、同じ抗原に曝露された時の反応(エフェクター相)に区別することができる(図2)(2)。https://www.jbpo.or.jp/med/jb_square/autoimmune/immunology/im09/01.php

cDC(標準型樹状細胞)2細胞は、通常DCファミリーに起因する一般的な機能、MHCクラスII上の抗原提示を介したナイーブCD4+ T細胞のプライミング、および共刺激に関与します。https://www.thermofisher.com/jp/ja/home/life-science/cell-analysis/cell-analysis-learning-center/immunology-at-work/dendritic-cell-overview.html

Interleukin-12 (IL-12) is a heterodimeric cytokine produced primarily by antigen-presenting cells (monocytes, macrophages, dendritic cells, and B cells). Its production is stimulated by bacteria, bacterial products, and intracellular parasites and enhanced by priming with granulocyte-macrophage colony-stimulating factor (CM-CSF) and interferon-gamma (IFN-gamma) or inhibited by IL-10. https://bibgraph.hpcr.jp/abst/pubmed/8613697

好中球のO2-産生には、プライミングという現象が知られている。好中球があらかじめ特定の刺激因子の作用を受けるとプライミングされた状態になり、続いて異なる刺激因子の作用によりO2-産生の著しい亢進が起こる1, 2)。プライミング作用を有する因子として、IL-1、腫瘍壊死因子(tumor necrosis factor; TNF-α)、顆粒球コロニー刺激因子(granulocyte colony-stimulatingfactor; G-CSF)、顆粒球・マクロファージ刺激因子(granulocyte-macrophage colony-stimulatingfactor; GM-CSF)、IL-8などのサイトカインがある3, 4)。http://plaza.umin.ac.jp/j-jabs/35/35.322.pdf

IL-2 は、IL2Rβ鎖および IL2Rγ鎖の両者を発現する抗原特異的なナイーブ T 細胞や NK 細胞を含む隣接細胞にトランスプレゼンテーション(trans-presentation)するため、活性化された DCの表面上に発現する IL2Rαに結合することができます4。この IL-2 のトランスプレゼンテーションは、IL-2 を産生するためにナイーブ T 細胞をプライミングする初期の免疫応答に必要な、高親和性の初期 IL-2 シグナル伝達を促進することが示されています6。https://www.nacalai.co.jp/ss/Contact/pdf/review-IL2-invivogen.pdf

脳波の解析に必要な線形代数の知識

主成分分析(PCA)

独立成分分析(ICA)

 

参考サイト

  1. 脳波解析マニュアル 脳波解析の方法を紹介
  2. ヒトの状態推定をするために脳波の時系列データを如何にモデリングするか 2018-11-09 kenyu-life.com
  3. https://www.slideshare.net/ssuser186f56/eeg-analysis-nonlinear

参考文献

  1. 物理からみた脳波 青木亮三 日本物理学会誌45(9):621-628 (1990).

参考図書

  1. 脳波解析入門 Windows10対応版 EEGLABとSPMを使いこなす 開 一夫 編金山 範明 編 2020年12月09日 東京大学出版会 適切な脳波の計測解析がこの一冊で可能に!脳活動研究に興味のある人必携の書。EEGLAB開発者スコット・マケイグの全面協力を得てチュートリアルを作成。専用ウェブサイトにて、チュートリアルデータや詳細な説明を提供。
  2. 市川 忠彦 新版 脳波の旅への誘い 第2版 ‐楽しく学べるわかりやすい脳波入門 2006/4/24  星和書店
  3. Mike X. Cohen and Jordan Grafman『Analyzing Neural Time Series Data Theory and Practice』Chapter5
  4. 田中 聡久 信号・データ処理のための行列とベクトル- 複素数,線形代数,統計学の基礎 – (次世代信号情報処理シリーズ 1) 2019/7/10  コロナ社
  5. 岡部 靖憲『実験数学 ―地震波,オーロラ,脳波,音声の時系列解析― 』2005年11月10日 朝倉書店 *大学図書館(他キャンパス)に蔵書ある

その他

  1. パッチ式脳波計 https://www.pgv.co.jp/technology-device
  2. 脳の神経細胞が行う掛け算の仕組みを解明

HALBAUによる多変量解析の実践 現代数学社

HALBAUによる多変量解析の実践

『HALBAUによる多変量解析の実践』現代数学社1995年1月25日

HALBAUという統計ソフトは現代数学社から(当時?)売れているものだそう。愛称「ハル坊」は、NECのPC9801で走る統計プログラムパッケージで、High-quality Analysis Libraries for Business and Academic Users)とのこと。PC9801っていつの時代だよ?って思います。HALBAUによる という書籍タイトルですが、別にHALBAUを使う必要はいまどきありません。本の中身は具体例が多くて、興味深いものです。編著者の名前でこの本に辿り着いたのですが、期待を裏切らないいい教科書だと思いました。理屈の部分が結構数式できっちり説明されています。

アマゾンで1円で売られていますが、HALBAUの部分を除いて考えても、とてもよい、コンパクトにまとまった多変量解析の教科書なので、お買い得かも。

『多変量解析の展開 隠れた構造と因果を推定推理する』(統計科学のフロンティア5 岩波書店 2002年12月10日)

『多変量解析の展開 隠れた構造と因果を推定推理する』(統計科学のフロンティア5 岩波書店 2002年12月10日)

図書館で借りました。

共著ですが各チャプターの著者がその領域の第一人者ばかりで、それだけでも刺激的な本であることがわかります。

目次

第I部 独立成分分析とその周辺 甘利俊一

1 信号の混合と分離独立成分分析の枠組み 2 問題の定式化 3 独立成分分析,主成分分析,因子分析 4 確率変数の従属性コスト関数 5 最急降下学習法 6 自然勾配学習法 7 独立成分分析における最急降下学習 8 推定関数と学習アルゴリズム 9 独立成分の逐次的抽出 10 信号の時間相関を利用する方法 11 時間的な混合とデコンボリューション 12 画像の分解と独立成分解析 参考文献

第II部 構造方程式モデリング,因果推論,そして非正規性 狩野裕

1 因果推論何が問題か 2 検証的因果推論パス解析 3 探索的因果推論共分散選択 4 構造方程式モデリング 5 因果の大きさを正確に測定する 6 因果の方向を同定する 7 回帰分析の役割 8 非正規性の問題 9 構造方程式モデリングの役割まとめに代えて 参考文献

第III部 疫学・臨床研究における因果推論 佐藤俊哉・松山裕

1 因果を探る 2 因果モデル 3 因果グラフ 4 因果パラメータの推定 5 因果は巡る 参考文献

補論A 分布の非正規性の利用 竹内啓

補論B 多次元AR モデルと因果関係 石黒真木夫

柳井 晴夫『多変量データ解析法―理論と応用』 朝倉書店

柳井 晴夫『多変量データ解析法―理論と応用』(行動計量学シリーズ)1994/12/1 朝倉書店 を図書館で借りて読みましたが、多変量解析で用いられる手法の数学的な理論の解説でした。線形代数を知らない人にはチンプンカンプンの書物でしょう。目次は、

1. 多変量データ解析概論
1.1 多変量データ解析とは
1.2 多変量データ解析の各種方法
1.3 多変量データ解析の最近の動向
2. 基本的数理
2.1 ベクトルによる分散と相関の表現
2.2 多変量データとその行列による表現
2.3 質的データの相関
2.4 多変量データ間の距離
2.5 確率変数による分散共分散行列とその表現
3. 多変量データの構造分析
3.1 主成分分析
3.2 主成分分析の利用法
3.3 データが類似度で与えられる場合の分析法
4. 予測と判別
4.1 重回帰分析
4.2 重回帰分析の諸問題
4.3 多変量回帰分析
4.4 判別分析
5. 多群の変量間の関連分析―正準相関分析
5.1 正準相関分析
5.2 正準相関分析の諸性質(その1)
5.3 正準相関分析の諸性質(その2)
5.4 正準相関分析の適用例
5.5 正準相関分析における新展開
6. 質的データの数量化―数量化理論と関連手法
6.1 数量化の基本概念
6.2 数量化Ⅰ,Ⅱ類
6.3 数量化Ⅲ類と対応分析
6.4 偏対応分析とその性質
6.5 その他の話題―対応分析の新しい展開
7. 潜在変数分析―因子分析と共分散構造分析
7.1 潜在変数モデルとは
7.2 因子分析法
7.3 共分散構造分析
7.4 項目反応理論
8. その他の手法
8.1 多重配列データの解析法
8.2 生存時間データに関する多変量データ解析
8.3 多変量解析の応用と多変量解析パッケージ
9. 付録:数学的性質
9.1 ベクトルの行列
9.2 固有値,固有ベクトルとその性質
9.3 直交射影行列とその性質
9.4 一般逆行列とその性質
9.5 一般逆行列と射影行列
9.6 行列の諸性質

数学を用いて、多変量解析の種々の技法を数学的な原理からスッキリと理解したい人向け。自分には読むのが極めて困難な本でした。

マンホイットニーのU検定とウィルコクソンの順位和検定とウィルコクソンの符号順位検定の違い

マンホイットニーのU検定とウィルコクソンの順位和検定とウィルコクソンの符号順位検定は、名前が似ていたり、内容が似ていたりして、普段t検定ばかりつかっていると、すぐに何がなんだったのかを忘れてしまいます。

パラメトリック検定であるt検定(つまり2群間の比較)で対応が無い場合に対応するノンパラメトリック版が、マンホイットニーのU検定およびそれと全く同値であるウィルコクソンの順位和検定です。マンホイットニーのU検定とウィルコクソンの順位和検定はやっていることが同一(同値)なので、どちらを使っても構いません。対応がある場合のt検定のノンパラメトリック版が、ウィルコクソンの符号順位検定です。「対応がある」のですから、比べたい2群のそれぞれのデータ数はもちろん同じでなくてはなりません。それに対して、マンホイットニーのU検定やウィルコクソンの順位和検定では、比べたい2群のそれぞれのデータ数(サンプル数)は異なっていても構いません。

参考図書

  1. 狩野克己、高橋秀人『基礎 医学統計学 改訂第6版』 この本がスッキリとした説明でなおかつ、計算式および簡単な実例を解説しているので、検定の中身がブラックボックスにならず、自分で何をやっているのかが自分で納得できるというメリットがあります。厳密な理論は理解したいとまでは思わないけど、検定で何をやっているのか計算式くらいは知っておきたいというスタンスの人に丁度手頃な教科書。きわめて整然と多数の手法がまとめられているので、自分の頭の中をスッキリと整理するのに役立つ本。2019年に第7版が出ています。フォントが変わったりして見やすくなったが、内容に変更はないようです。統計学の勉強のための最初の一冊としても申し分ないし、日常的に使うためのリファレンスとしても良い本なので、是非手元に置いておきたい本です。

ピアソンの相関係数の意味、求め方、解釈の仕方、ありがちな間違い

ピアソンの相関係数とは:定義

ピアソンの相関係数とは、わかりやすく言うと、2つの量にどの程度の相関があるかを表す指標です。正式名称は、ピアソンの積率相関係数と言います。

相関係数って何?と思って統計の教科書を開いたときに、相関係数の定義が載っているわけですが、教科書によって大きく分けて2つの説明があります。一つは、確率変数X,Yに関する相関の定義。もう一つは、実際に観察されたデータの変数X,Yに関する相関の定義です。この区別を頭の中でできていない状態で教科書を見ると、本によって書いてあることが違うような気がして頭が混乱します。

例えば稲垣宣生『数理統計学』のような数学的な内容の教科書だと、確率変数X,Yを基準化したものの共分散を相関係数と呼ぶと説明しています。他方、豊川・柳井(編著)『医学・保健学の例題による 統計学』の相関係数の説明を読むと(51ページ)、データ(xi, yi)に関して相関係数の計算式を紹介しています。

ウィキペディアの説明も注意深く読むと2つの状況に関して書いてあります。

相関係数(そうかんけいすう、英: correlation coefficient)とは、2つのデータまたは確率変数の間にある線形な関係の強弱を測る指標である。(ウィキペディア

日本統計学会(編)『統計学実践ワークブック』の相関係数の説明を読むと、確率変数X,Yに関する説明がありますが、そのあとで実際のデータに関する言及の前に補足的な説明がちゃんとされていました。

データの特性値 これまで紹介してきた特性値は分布(母集団)に関する特性値である。実際に観測されたデータに対する特性値もほぼ同様に計算される。(日本統計学会(編)『統計学実践ワークブック』 17ページ)

自分のような初学者はこんな、そもそも今何について考えているのか、といった当たり前すぎることで混乱し躓いたりするのですが、日本統計学会(編)『統計学実践ワークブック』はコンパクトなわりに、よくよく読むと結構親切に書かれていることがわかります。

ピアソンの相関係数を使ってはいけない例

ピアソンの相関係数は、2つの変数XとYのデータにどれくらいの直線的な関係があるかを示すものです。そもそもYとXとの間に直線関係が無い場合は、いくらXとYとが密接に関連していたとしても、ピアソンの相関係数は1に近くはなりません。もともと直線性が仮定できないようなデータX,Yに対してピアソンの相関係数を計算することはナンセンスです。そのため、ピアソンの相関係数を求めるまえにまずXとYの散布図を描画してみて、線形性があるかどうかを見ておくことが大事です。

  1. データの関係性を表せる「相関係数」と2つの落とし穴
  2. 相関係数について相関係数の注意点

ピアソンの相関係数の求め方と計算式

XとYという2つの変数(データ)がn個ずつあったとき、ピアソンの積率相関係数は、

ピアソンの積率相関係数 = XとYの共分散 / Xの標準偏差とYの標準偏差との積

という数式で求められます。

  1. ピアソンの積率相関係数 ウェブリオ辞書
  2. ピアソンの積率相関係数 Pearson product-moment correlation coefficient BellCurb統計用語集

ピアソンの相関係数の意味

定義式からわかるように、ピアソンの相関係数はXとYが完全に相関しているとき、すなわち直線関係にあるときに1になり、まったく相関がないときに0になります。XとYが逆相関しているときは-1を取ります。-1から1までの間の数をとることになります。

ピアソンの相関係数のp値とは

相関係数が0でないかどうかを調べるために検定が行われます。p値が小さいから相関が強いと解釈するのは間違いです。相関の強さは相関係数が1に近いかどうかです。

SPSSによるピアソンの相関係数の求め方

Rを用いたピアソンの相関係数の求め方

ピアソンの相関係数とスピアマンの相関係数との違いと使い分け方

Pearson の相関係数には、対称的な量的変数を使用し、Spearman のローおよび Kendall のタウ bには、量的変数または順序付けされたカテゴリー変数を使用します。(2 変量の相関分析 SPSS Statistics 27.0.0 IBM)

  1. データ尺度の違いによる相関関係を数値化する方法の種類
  2. ピアソンの相関の方法とスピアマンの相関の方法の比較 menu Minitab® 18サポート

ピアソンの相関係数を英語でいうと

ピアソンの相関係数は英語で、Pearson’s Correlation Coefficient (PCC)あるいはPearson’s Product-Moment Correlation Coefficient (PPMCC)あるいはPearson’s rなどと言われるようです。

参考

  1. 標準偏差の名付け親は,相関係数で有名なピアソン,不偏標準偏差の話題と共に

 

ChatGPTに聞くピアソンの相関係数の説明

ピアソンの相関係数(Pearson’s correlation coefficient)は、2つの連続変数の間の線形な関係を測定する統計的指標です。この係数は、変数間の相関がどれだけ強いかを示し、その方向(正の相関または負の相関)も示します。ピアソンの相関係数は、-1から1の範囲で値をとります。

  • 1に近い場合:完全な負の線形関係があることを示します。1つの変数が増加すると、もう一方の変数は減少します。
  • 1に近い場合:完全な正の線形関係があることを示します。1つの変数が増加すると、もう一方の変数も増加します。
  • 0に近い場合:相関がほとんどないことを示し、変数間には線形関係がほとんど存在しないか、非線形の関係がある可能性があります。

臨床研究の例を通じてピアソンの相関係数を説明しましょう。

臨床研究の例: 体重と血圧の関係

研究の背景: 研究者は、患者の体重と血圧の関係を調査し、これらの変数の相関を明らかにしようとしています。血圧が高い人々は、通常、体重が増加しているのか、それとも相関は存在しないのかを調べる必要があります。

データ収集: 100人の患者から、各人の体重(kg)と収縮期血圧(mmHg)のデータが収集されました。

データ解析: これらのデータを使用して、ピアソンの相関係数を計算します。相関係数が正であれば、体重と収縮期血圧が一緒に増加する傾向があり、相関が強いほど、その関係が強いことを示します。負の相関係数は、一方の変数が増加すると他方が減少することを示し、相関が強いほどその関係が強いことを示します。

結果: ピアソンの相関係数を計算した結果、体重と収縮期血圧の間に正の相関があることが示されました。相関係数が+0.65であるため、体重が増加すると、収縮期血圧も増加する傾向があります。この情報は、臨床医や研究者にとって、体重が高血圧に対するリスク要因である可能性を示唆しています。

このように、ピアソンの相関係数は2つの変数の関係を定量化し、臨床研究において異なる変数間の相関を評価するために広く使用されます。

(参照:chat.openai.com)

多変量解析に関する入門書 お勧め、定番、超初心者向けなど

医学研究を進めるうえで医療統計学の知識、特に多変量解析の知識が欠かせません。SPSSなどのソフトにただデータを入れれば、何かしらの結果は出ますが、それだと結果の解釈の段階で途方にくれてしまいます。やはり多変量解析の原理的な部分を抑えておく必要があるでしょう。どれだけ数学的なバックグラウンドがあるか、数学的な原理から理解したいという動機があるかによって、お勧めの教科書は変わってきます。

一口に多変量解析の教科書といっても、対象とする読者は数学的な原理はともかく使えればいい人、定理の厳密な証明はいいけど数学的な基礎はある程度理解しておきたい人、仕事ですぐに使いたい人、統計学を勉強中の理系大学生・大学院生、勉強する時間があまり取れない実務に携わる多忙な社会人など様々なので、自分が想定された読者なのかどうかを判断する必要があります。

線形代数がメインの書籍はまた別記事にします。

→ 多変量解析を理解するための線形代数の教科書

Rによる多変量解析入門

川端 一光, 岩間 徳兼, 鈴木 雅之『Rによる多変量解析入門 データ分析の実践と理論』オーム社  July 19, 2018

手元にデータがあってすぐに分析をしたい人にピッタリの本。理論的な説明はないかわりに、結果の解釈の際の注意事項の説明が詳細。説明の順番は、データの解析、結果、解釈や数学的な理屈の順になっています。Rそのものに関しては紙面をあまり割いていないので、pythonで勉強したい人にとっても紙面が無駄になっておらず、ためになります。数学的な理屈に関してはおいおい勉強するとして、とりあえず仕事ですぐに多変量解析をやらなきゃいけない人にとってはベストの教科書ではないでしょうか。

出版社の書籍紹介によれば、

多くの多変量解析についての学習書は、理論的な説明に終始し、実務場面でどのように利用されているかについて、殆ど配慮がないのが現状です。そこで本書は、多変量解析手法の理論と実践をバランスよく解説することで、統計が得意ではない大学生や実務者にも利用しやすい構成とし、本書1冊で多変量解析手法を実務に応用できるまで習得できる内容となっています。

とのことですが、看板に偽りなしです。目次は、以下の通り。

第Ⅰ部 多変量解析の基礎
第1章 多変量解析の基礎を学びたい―R による多変量データの基本的な統計処理
第2章 R によるデータハンドリングを学びたい ―アンケートデータと ID-POS データのハンドリング
第Ⅱ部 量的変数の説明・予測
第3章 現象を説明・予測する統計モデルを作りたい (1) ―重回帰分析
第4章 現象を説明・予測する統計モデルを作りたい (2) ―階層的重回帰分析
第5章 さまざまな集団から得られたデータを分析したい―マルチレベルモデル
第6章 複雑な仮説を統計モデルとして表したい (1)―パス解析
第Ⅲ部 心理尺度の分析
第7章 心理尺度を開発したい (1) ―探索的因子分析
第8章 心理尺度を開発したい (2) ―確認的因子分析
第9章 複雑な仮説を統計モデルとして表したい (2) ―潜在変数を伴うパス解析
第Ⅳ部 質的変数の説明・予測
第10章 クロス集計表をもっとていねいに分析したい―対数線形モデル
第11章 カテゴリに所属する確率を説明・予測したい―ロジスティック回帰分析
第Ⅴ部 個体と変数の分類
第12章 似たもの同士にグループ分けしたい―クラスター分析
第13章 質的変数間の連関を視覚化したい―コレスポンデンス分析
第Ⅵ部 多変量解析を使いこなす
第14章 データが持つ情報を視覚化したい―パッケージggplot2による描画
第15章 多変量解析を実践で生かしたい―手法の組み合わせ

 

多変量解析入門

小西 貞則『多変量解析入門――線形から非線形へ』January 27, 2010 岩波書店

目次

  1. 1 はじめに 1.1 現象のモデル化 1.2 識別・判別 1.3 次元圧縮 1.4 分類
  2. 2 線形回帰モデル 2.1 2変数間の関係を捉える 2.2 多変数間の関係を捉える
  3. 3 非線形回帰モデル 3.1 現象のモデル化 3.2 基底関数に基づくモデル 3.3 基底展開法 3.4 正則化法
  4. 4 ロジスティック回帰モデル 4.1 リスク予測モデル 4.2 複合リスク予測モデル 4.3 非線形ロジスティック回帰モデル
  5. 5 モデル評価基準 5.1 予測誤差に基づく評価基準 5.2 情報量基準 5.3 ベイズ型モデル評価基準
  6. 6 判別分析 6.1 フィッシャーの線形判別 6.2 マハラノビス距離に基づく判別法 6.3 多群判別 6.4 変数選択 6.5 正準判別
  7. 7 ベイズ判別 7.1 ベイズの定理 7.2 ベイズ判別法 7.3 ロジスティック判別
  8. 8 サポートベクターマシーン 8.1 分離超平面の構成 8.2 線形分離可能でない場合のテクニック 8.3 線形から非線形へ
  9. 9 主成分分析 9.1 主成分の構成 9.2 カーネル主成分分析
  10. 10 クラスター分析 10.1 階層的分類法 10.2 非階層的分類法 10.3 混合分布モデル
  11. 付録A ブートストラップ法 付録B ラグランジュの未定乗数法 付録C EMアルゴリズム

著者の略歴は、広島大学理学部数学科卒、文部省統計数理研究所を経て九州大学大学院数理学研究院教授。専門は,非線形多変量解析,情報量統計学(岩波書店)。

アマゾンのレビューを読むと、データから数理モデルを組み立てるというアプローチとして多変量解析が解説されている、モデルを線形から非線形に拡張するように丁寧な議論となっていて、特にSVMの解説は分かりやすい、数式は多いが、出てくる数式や式展開は、パターン化していてしかも数学的な説明が丁寧なので、読みやすく大変理解しやすいとのこと。

 

多変量解析法入門

永田 靖, 棟近 雅彦『多変量解析法入門』 (ライブラリ新数学大系) サイエンス社 April 1, 2001

アマゾンのレビューを読む限り、数学が苦手な人でも追えるような丁寧さで、数式によって説明を進めているそう。目次は、

  1. 1 多変量解析法とは 1.1 多変量データ 1.2 重回帰分析とは 1.3 数量化1類とは 1.4 判別分析とは 1.5 数量化2類とは 1.6 主成分分析とは 1.7 数量化3類とは 1.8 多次元尺度構成法とは 1.9 クラスター分析とは
  2. 2 統計的方法の基礎知識 2.1 データのまとめ方 2.2 確率分布 2.3 検定と推定 練習問題
  3. 3 線形代数のまとめ 3.1 行列とベクトル 3.2 固有値と固有ベクトル 3.3 ベクトルによる微分 3.4 変数ベクトルによる期待値と分散・共分散 練習問題
  4. 4 単回帰分析 4.1 適用例と解析ストーリー 4.2 解析方法 4.3 行列とベクトルによる表現 練習問題
  5. 5 重回帰分析 5.1 適用例と解析ストーリー 5.2 説明変数が2個の場合の解析方法 5.3 説明変数がp個の場合の解析方法 5.4 行列とベクトルによる表現 練習問題
  6. 6 数量化1類 6.1 適用例と解析ストーリー 6.2 説明変数が1個の場合の解析方法 6.3 説明変数が2個以上の場合の解析方法 6.4 説明変数に量的変数と質的変数が混在する場合 練習問題
  7. 7 判別分析 7.1 適用例と解析ストーリー 7.2 変数が1個の場合の解析方法 7.3 変数が2個以上の場合の解析方法 7.4 行列とベクトルによる表現 練習問題
  8. 8 数量化2類 8.1 適用例と解析ストーリー 8.2 説明変数が1個の場合の解析方法 8.3 説明変数が2個以上の場合の解析方法 8.4 説明変数に量的変数と質的変数が混在する場合
  9. 9 主成分分析 9.1 適用例と解析ストーリー 9.2 説明変数が2個の場合の解析方法 9.3 説明変数がp個の場合の解析方法 9.4 行列とベクトルによる表現
  10. 10 数量化3類 10.1 適用例と解析ストーリー 10.2 数量化3類の基本的な考え方と解析方法 練習問題
  11. 11 多次元尺度構成法 11.1 適用例と解析ストーリー 11.2 非計量MDSの解析方法 11.3 計量MDSの考え方 練習問題
  12. 12 クラスター分析 12.1 適用例と解析ストーリー 12.2 変数が2個の場合のクラスター分析 12.3 変数がp個の場合のクラスター分析 12.4 クラスター間の距離 12.5 ウォード法 練習問題
  13. 13 その他の方法 13.1 パス解析 13.2 グラフィカルモデリング 13.3 因子分析 13.4 正準相関分析 13.5 多段層別分析 練習問題

 

多変量データ解析

杉山 高一 (著), 小椋 透 (著), 藤越 康祝『多変量データ解析』 (シリーズ“多変量データの統計科学”)  朝倉書店  November 25, 2014

出版社の説明によれば、

シグマ記号さえ使わずに平易に多変量解析を解説する」という方針で書かれた’83年刊のロングセラー入門書に,因子分析正準相関分析の2章および数理的補足を加えて全面的に改訂。主成分分析,判別分析,重回帰分析を含め基礎を確立。

とのこと。数学恐怖症の人向けのようです。

もくじ

  1. 1 相関係数 1.1 成績データの相関係数 1.2 手のデータの相関係数 1.3 相関係数の安定性 1.4 分散と共分散 1.5 数理的補足–相関係数
  2. 2 主成分分析 2.1 主成分分析とは 2.2 共分散行列による主成分分析–手のデータ 2.3 相関行列による主成分分析(1) –成績のデータ 2.4 相関行列による主成分分析(2)–被服のデータ 2.5 因子負荷量–漢字テストの分析 2.6 歯の咬耗度に基づく主成分分析 2.7 主成分スコア低次元空間表現 2.8 主成分軸の回転 2.9 固有値の信頼区間 2.10 固有ベクトルの信頼性 2.11 数理的補足–主成分分析
  3. 3 判別分析 3.1 判別分析とは 3.2 マハラノビスの距離 3.3 判別分析の考え方 3.4 2変量の判別分析 3.5 線形判別関数 3.6 多変量の判別分析–筆跡鑑定のデータ 3.7 変数選択による判別分析–逐次法(1) 3.8 変数選択による判別分析–逐次法(2) 3.9 変数選択による判別分析–AIC 規準・誤判別確率 3.10 線形判別分析の頑健性 3.11 逐次法における規準値とAIC 規準 3.12 数理的補足–判別分析
  4. 4 重回帰分析 4.1 重回帰式とは 4.2 1変数の場合の回帰式 4.3 2変数の回帰分析 4.4 残差分散, 重相関係数 4.5 回帰係数の信頼区間 4.6 多重共線性 4.7 説明変数の選択–逐次法 4.8 説明変数の選択–AIC とCp 4.9 逐次法における規準値とAIC 規準 4.10 主成分回帰 4.11 偏相関係数 4.12 数理的補足–重回帰分析
  5. 5 因子分析 5.1 因子分析とは 5.2 因子分析モデルと回転 5.3 推測法 5.4 白人の手のデータ 5.5 数理的補足–因子分析
  6. 6 正準相関分析 6.1 正準相関とは 6.2 正準相関–成績のデータ 6.3 寄与率と次元 6.4 正準相関分析–歯の咬耗度データ 6.5 正準相関の安定性 6.6 数理的補足–正準相関
  7. A 行列・固有値 A.1 行列 A.2 多変量データと基礎統計量の行列表示 A.3 行列式と逆行列 A.4 固有値・固有ベクトル
  8. B 多変量分布 B.1 身長の分布と正規分布 B.2 2次元正規分布 B.3 数理的補足–多変量正規分布

 

重回帰分析の実際的な手順  

重回帰分析はSPSSでやると一瞬ですが、高価なソフトウェアがなくても無料のpythonやRを使って分析することも比較的簡単にできるようです。実際的な手順を解説したサイトを纏めておきます。

得られた予測式の係数の解釈について:注意点など

  • 回帰係数にはデータ単位があり、目的変数のデータ単位と同じ
  • 回帰係数から『説明変数の目的変数に対する貢献度』がわかります。
  • データ単位が変われば係数の値も変わることを理解してください。したがって、関係式の回帰係数を比較し、値が大きい説明変数ほど目的変数に貢献しているとか重要であるいうことはいえません。重回帰分析では、回帰係数とは別の統計量「標準回帰係数」を算出し、この値を使って売上を予測するのに重要な説明変数のランキング(順番)を把握します。

引用元:多変量解析の手法別解説>重回帰分析(2/3) アイスタット

 

  • 特に注意しないといけない点は,回帰分析は決して因果関係を表しているわけではないということです.従属変数を独立変数で「予測」するのが回帰分析というと,いかにも「独立変数⇒従属変数」という矢印つきの因果関係を想定しがちですが,決して因果関係と断定はできません.あくまで回帰係数は相関関係です.例えば単回帰分析の場合,独立変数と従属変数を入れ替えても,標準化された回帰係数は全く変わらず,しかもその値は普通の単相関係数なのです.
  • 「従属変数の予測力」と「具体的にどの独立変数が従属変数にどのような形で効いているかを理解できること」ということは別問題です.後述するように,偏回帰係数の解釈は独立変数の数が増えるほど困難になります.社会学のように,とにかく社会事象の予測の精度を目的にする場合では,独立変数を増やしてその予測力を高めることには一定の意味があると思いますが,例えば教育心理学研究のように独立変数と従属変数の具体的な関係を吟味し,そのメカニズムを解明したり独立変数を操作して介入に生かしていこうという場合には,多くの独立変数を投入した重回帰分析は結果の解釈が困難で,実質的に無意味になることが多いです.

(重回帰分析について 1.単回帰・重回帰分析における基本的な注意点 koumurayama.com)

  1. 決定係数や標準化偏回帰係数が高いと「影響力が強い」といえるのか?ryotamugiyama.com/
  2. 重回帰分析とは?(手法解析から注意点まで)surveroid.jp

重回帰分析により、従属変数をうまく表現する予測モデル(式)が得られますが、その式に現れる係数(回帰係数や標準化回帰係数)は、予測モデルにおける貢献の度合い、影響の大きさを表しているにすぎず、「原因としての大きさ」と無考えに解釈していいわけではないようです。所詮、単なる数式なので、何を独立変数として、何を従属変数とするかに関しても、別に数学的には制約はないわけで、独立変数を従属変数を入れ替えても(つまり、原因と思っていたことと、結果と思っていたことを入れ替えても)重回帰分析はできてしまうことを考えれば、重回帰分析は因果関係を直ちに教えてくれるものでは決してないということが理解できます。

 

変数の正規化について

偏回帰係数は、どの説明変数がどの程度目的変数に影響を与えているかを直接的には表していません。身長を(cm)で計算した場合と(m)で計算した場合とでは全く影響度の値が異なってしまうことからも明らかです。各変数を平均 0,分散 1 に標準化して求めた「標準偏回帰係数」を用いれば、各説明変数のばらつきの違いによる影響を除去されるので、影響度が算出されます。(重回帰分析とは albert2005.co.jp)

購入額の予測値=5,000+30×(年齢)+300×(性別)+450×(家族人数)+0.001×(年収)

この関係式において、説明変数(属性)が、購入額(目的変数)に対しておよぼす影響の大きさを知りたいということがよくあります。上の関係式では、年齢や年収は単位が違います。したがって年齢の項の偏回帰係数30と年収の項の偏回帰係数0.001は直接比較できません。そこで、あらかじめ説明変数を平均0、分散1に標準化()しておくと、単位が同一の条件下で分析できます。(回帰分析のモデルと基本式 macromill.com)

ダミー変数について

一般線形モデルでは,質的な独立変数(つまり,分散分析の要因)を,(水準数-1)個のダミー変数を使って表す。ダミー変数とは,ある水準に属していることを1で表し,属していないことを0で表す変数のことである。‥ このような(水準数-1)個のダミー変数を独立変数として重回帰分析を行うと,重回帰モデルの有意性検定の自由度,F値,p値が,対応のない1要因分散分析と同じ値になる。回帰式を最小二乗法で推定すれば,予測値は各水準の母平均の最小二乗推定値となる。詳しくは南風原(₂₀₀₂)のpp. ₂₁₆-₂₁₉,₂₇₅-₂₇₆を参照されたい。(統計モデルの違いを理解する 一般線形モデル・一般化線形モデル・階層線形モデル・階層的重回帰モデル The Annual Report of Educational Psychology in Japan₂₀₁₈, Vol. ₅₇, 302-308 PDF

  1. 第7章 ダミー変数 osaka-u.ac.jp

 

pythonを用いた重回帰分析

pandasとscikit-learnを使うと、SPSSでできることがpythonでもあっさりとできるようです。下記のウェブサイトを参考に自分のデータで計算してみたところ、pythonでもSPSSでも同じような結果が得られました。

  1. Pythonで基礎から機械学習 「重回帰分析」 @karaage0703 デフォルトは以下のようです。ややこし過ぎですね。 scikit-learn: 分散  pandas: 不偏分散  numpy: 分散  R言語: 不偏分散 ‥ このように、偏差回帰係数と標準化偏差回帰係数は簡単に変換できるので、正規化しないで重回帰分析をして偏回帰係数を求め、後から必要に応じて標準化偏回帰係数を求める方が計算上は楽です。
  2. 重回帰分析の概要とpython 実装 実践ケモインフォマティクス
  3. scikit-learn で線形回帰 (単回帰分析・重回帰分析) pythondatascience.plavox.info 各変数がどの程度目的変数に影響しているかを確認するには、各変数を正規化 (標準化) し、平均 = 0, 標準偏差 = 1 になるように変換した上で、重回帰分析を行うと偏回帰係数の大小で比較することができるようになります。

 

Rを用いた重回帰分析

  1. 18. 重回帰分析 1 (単回帰と重回帰)takushoku-u.ac.jp

 

論文出版の際のまとめ方

  1. 3.結果のまとめと解釈 rikkyo.ac.jp 分析結果は、学術論文では以下のような形式のにまとめる。図の方が一般向けには分かりやすい。各説明変数の偏回帰係数有意か、モデル全体の説明力はどうか、なぜそのような結果が出たのかなどについて検討し、結果の解釈や考察を行うこと。

 

参考

  1. 12 重回帰分析の使用上の注意 kwansei.ac.jp
  2. 回帰分析を理解しよう!-回帰分析の由来と概念、そして分析結果の評価について- 生活研究部 主任研究員・ヘルスケアリサーチセンター・ジェロントロジー推進室兼任 金 明中 ニッセイ基礎研究所