未分類」カテゴリーアーカイブ

原始結節nodeを移植すると二次の体軸が形成されるという実験報告論文

Consensus.aiによるまとめ。

Introduction

The transplantation of the node, a critical embryonic structure, has been studied for its ability to induce ectopic body axes in both mice and chicks. This research explores the node’s role in axis formation and its potential to organize and pattern embryonic development when transplanted to non-native locations.

Key Insights

  • Induction of Ectopic Neural Axis in Mice:
    • Transplanting the mouse node to a posterolateral location in a host embryo induces a second neural axis and ectopic somites. The graft predominantly forms notochord and endoderm, while the host contributes to neurectoderm and somites.
  • Induction of Ectopic Axis in Chicks:
    • Hensen’s node in chick embryos can induce a complete embryonic axis, including a fully patterned central nervous system, when transplanted to an ectopic site. This includes host-derived neural tissue.
  • Role of Node in Axis Formation:
    • The mouse node is crucial for the formation of the notochord, floor plate, and gut endoderm. Its ablation leads to the recruitment of surrounding tissues to restore the neural tube and paraxial mesoderm, although the body axis may be foreshortened and somite formation delayed.
  • Synergistic Activity in Axis Induction:
    • In mice, the combination of the early gastrula organizer (posterior epiblast), anterior visceral endoderm, and anterior epiblast is necessary to induce anterior neural structures and form an ectopic axis. The anterior germ layer tissues alone do not act as a classical organizer.
  • Molecular Mechanisms in Chicks:
    • The protein Tsukushi (TSK) in chicks inhibits BMP signaling, which is essential for the formation of Hensen’s node and the induction of an ectopic node when combined with the middle primitive streak.

Conclusion

The transplantation of the node in both mice and chicks can induce the formation of ectopic body axes, demonstrating its critical role in embryonic patterning. In mice, the node primarily contributes to the notochord and endoderm, while(全然対比になっていない。。) in chicks, Hensen’s node can induce a complete axis including neural tissues. The induction of anterior neural structures in mice requires a combination of specific germ layer tissues, highlighting the complexity of axis formation. Molecular mechanisms, such as BMP inhibition by Tsukushi in chicks, further elucidate the processes involved in node-induced axis formation.

名前が似ているけどnorrin とnogginは全く別の遺伝子

nogginは有名ですがnorrinは初めて知りました。まさかミスプリじゃないよねと思ってChatGPTで確認したところ、もちろん別の遺伝子でした。

質問:norrinとnogginは同じものですか?

No, Norrin and Noggin are different genes with distinct functions and roles in development.

Key Differences between Norrin and Noggin:

  1. Noggin:
    • Gene Symbol: NOG
    • Function: Noggin is a secreted protein that acts as an antagonist of BMP (Bone Morphogenetic Protein) signaling. It binds to BMPs and prevents them from interacting with their receptors, which helps to regulate dorsal-ventral patterning during early embryonic development.
    • Role in Development: Noggin is crucial for neural induction and dorsalization of mesoderm, particularly in the context of vertebrate development. It is one of the organizer molecules discovered in studies on Spemann’s organizer.
    • Pathways: It primarily modulates TGF-β family signaling, including BMPs.
  2. Norrin:
    • Gene Symbol: NDP (stands for Norrie Disease Protein)
    • Function: Norrin is a secreted signaling molecule that functions as a ligand for the Frizzled-4 (FZD4) receptor in the Wnt/β-catenin signaling pathway.
    • Role in Development: Norrin is primarily involved in the development of the retina and inner ear. It plays a critical role in vascular development, especially in the retina and blood-brain barrier. Mutations in the NDP gene are associated with Norrie disease, which leads to blindness and other developmental issues.
    • Pathways: Norrin functions through the Wnt signaling pathway, specifically by binding to Frizzled-4 and LRP5/6 to activate β-catenin signaling.

Summary:

  • Noggin is involved in BMP inhibition and dorsal-ventral patterning during embryonic development.
  • Norrin is involved in Wnt signaling, particularly in the context of vascularization and retinal development.

They are distinct genes with different roles and mechanisms in development, even though their names sound similar.

体軸上で、四肢の出る位置はどのようにして決まるのか?

 

 

 

Patterning mechanisms controlling vertebrate limb development. J. Capdevila, J. C. I. Belmonte · 2001 脊椎動物の四肢芽では、シグナル伝達経路間の複雑な相互作用により、四肢の位置決め、成長、パターン形成が制御されます。 https://www.annualreviews.org/content/journals/10.1146/annurev.cellbio.17.1.87 本文有料 総説論文

 

Analysis of Hox gene expression in the chick limb bud. C. Nelson, Bruce A. Morgan, Ann C. Burke+7 more · 1996年5月1日 肢芽における Hox 遺伝子の発現は、肢の近位遠位節 (上腕、下腕、手) の指定とパターン形成に関連して、最大 3 つの独立した段階で制御されます。https://journals.biologists.com/dev/article/122/5/1449/39007/Analysis-of-Hox-gene-expression-in-the-chick-limb 

分子生物学とは?生化学との違い

大雑把にいうと、分子生物学はDNAの科学、生化学はタンパク質の科学と捉えてよいものでしょうか?ChatGPTに訊いてみました。

分子生物学とは?

  • 分子生物学は、DNA、RNA、タンパク質の相互作用を中心に、生物の遺伝情報の伝達と機能を探る学問です。
  • 遺伝子の複製(DNAのコピー)、転写(DNAからRNAへの変換)、翻訳(RNAからタンパク質への変換)など、遺伝情報がどのようにして細胞内で利用されるかを研究します。
  • たとえば、遺伝子の発現調節遺伝子変異シグナル伝達などが分子生物学の対象となります。

生化学とは?

  • 生化学は、生物を構成する化学的な物質やその化学反応を研究する学問です。
  • タンパク質に関する研究は生化学の大きな部分を占めますが、それだけではなく、脂質、糖、核酸、代謝経路(例えばエネルギーの生成や利用)、酵素反応など、生物のあらゆる化学反応が対象です。
  • 酵素の機能や、細胞の代謝過程における化学反応の詳細なども生化学の主要な研究テーマです。

まとめ:

  • 分子生物学=「DNAや遺伝子の科学」に近いが、実際にはRNAやタンパク質も含む遺伝情報の流れ全体を研究する。
  • 生化学=「生体内の化学反応」や「タンパク質を含む生体分子の機能」を広く研究する。

したがって、「分子生物学がDNAの科学、生化学がタンパク質の科学」という理解は、分子生物学と生化学の一部を反映していますが、全体の範囲や対象を理解するにはもう少し幅広く捉える必要があります。

(ChatGPT 4o)

カエルとマウスの発生学から得られた知見の統合:wnt, BMP, nordal, オーガナイザー、神経誘導などについて

 

Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage https://www.biorxiv.org/content/10.1101/2020.07.16.167320v1.full

 

Developmental Cell Volume 1, Issue 5, November 2001, Pages 605-617 Journal home page for Developmental Cell Review Nodal Signaling in Early Vertebrate Embryos: Themes and Variations https://www.sciencedirect.com/science/article/pii/S1534580701000764

TGF-β Family Signaling in Early Vertebrate Development June 2017Cold Spring Harbor Perspectives in Biology 10(6):a033274 DOI:10.1101/cshperspect.a033274 https://www.researchgate.net/figure/TGF-b-family-signaling-gradients-during-gastrulation-A-Embryonic-tissues-patterned-by_fig1_317494952

上肢や下肢が出る位置はどのようにして決まるのか?

上肢や下肢が出る位置はどのようにして決まるのでしょうか?体軸の位置はHOXコードで決まるのだとすれば、ある特定のHOX遺伝子産物が転写制御因子となって上肢や下肢の肢芽で発現するTbx5やTbx4の発現を直接制御するのでしょうか(エンハンサーかプロモーターに特異的に結合するなどして)?

下の総説によれば、HOX遺伝子が活性化や抑制に働くようです。

A Combination of Activation and Repression by a Colinear Hox Code Controls Forelimb-Restricted Expression of Tbx5 and Reveals Hox Protein Specificity Satoko Nishimoto,Carolina Minguillon,Sophie Wood,Malcolm P. O. Logan Published: March 20, 2014 https://doi.org/10.1371/journal.pgen.1004245

最近の総説論文を読むと, HOXコードで前肢の出る位置は決まるようですが、そう単純ではなさそうです。ただTbx5はFgf10遺伝子のプロモーターに直接結合して発現を誘導するそうです。下肢については、前肢ほどには研究がなされておらず、HOXコードで位置が規定されるのか、FGF10を発現させるものが何なのかについては報告がなさそうです。

  1. Current research on mechanisms of limb bud development, and challenges for the next decade Takayuki Suzuki Genes & Genetic Systems/Volume 99 (2024) https://www.jstage.jst.go.jp/article/ggs/99/0/99_23-00287/_html/-char/en 

 

  1. Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo Development (2003) 130 (3): 623–633. https://journals.biologists.com/dev/article/130/3/623/42069/Tbx5-is-essential-for-forelimb-bud-initiation
    1. mouse embryos lacking Tbx5 do not form forelimb buds
    2. Tbx5 directly activates the Fgf10 gene via a conserved binding site, providing a simple and direct mechanism for limb bud initiation
  2. Tbx5 is required for forelimb bud formation and continued outgrowth Development . 2003 Jun;130(12):2741-51. doi: 10.1242/dev.00473.

https://journals.biologists.com/dev/article/147/17/dev177956/225797/Establishing-the-pattern-of-the-vertebrate-limb

notchは原始線条nodeのmotile ciliaをもつ細胞でnodal遺伝子発現を誘導するか

左右差を生み出す最初の仕組みは、マウスの場合は原始結節(2層の細胞層)の下側(中胚葉由来である脊索が脊索板になって内胚葉の層と一体化している)の細胞がもつ線毛の回転により左向きの水流が生じて、それを原始結節の両側に存在する動かない線毛を持つ細胞が感知して、左側に特異的な遺伝子発現を始めるというものでした。

動かない線毛を持つ細胞は左右両側にありますが、その線毛に存在するカルシウムチャンネルPkd2は正中線側に偏って存在しているため、左向きの水流で曲げられた線毛の正中線側の部分は、左側の細胞では引っ張られ、右側の細胞では表面が縮まることになります。張力によって開くカルシウムチャネルPkd2は、左側でのみ開くので、Ca濃度上昇に依存した細胞内の変化が、特異的な遺伝子発現につながるわけです。その細胞内変化とはどのようなものでしょうか。

notchは原始線条nodeのmotile ciliaをもつ細胞でnodal遺伝子発現を誘導するのでしょうか?

  1. Notch signaling regulates left–right asymmetry determination by inducing Nodal expression Luke T Krebs 1,4, Naomi Iwai 2,3,4, Shigenori Nonaka 2,3, Ian C Welsh 1, Yu Lan 1,5, Rulang Jiang 1,5, Yukio Saijoh 2, Timothy P O’Brien 1, Hiroshi Hamada 2,3,6, Thomas Gridley 1,7 Genes Dev. 2003 May 15;17(10):1207–1212. doi: 10.1101/gad.1084703 https://pmc.ncbi.nlm.nih.gov/articles/PMC196059/
  2. Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination Ángel Raya, Yasuhiko Kawakami, Concepción Rodríguez-Esteban, Marta Ibañes, Diego Rasskin-Gutman, Joaquín Rodríguez-León, Dirk Büscher, José A. Feijó & Juan Carlos Izpisúa Belmonte Nature volume 427, pages121–128 (2004)
  3. Notch activity induces Nodal expression and mediates the establishment of left–right asymmetry in vertebrate embryos Genes Dev. 2003 May 15;17(10):1213–1218. doi: 10.1101/gad.1084403 https://pmc.ncbi.nlm.nih.gov/articles/PMC196060/
  4. Developmental Biology Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left–right axis formation Developmental Biology Volume 376, Issue 1, 1 April 2013, Pages 23-30  https://www.sciencedirect.com/science/article/pii/S0012160613000365?via%3Dihub

カエルのオーガナイザーその他のシグナル分子の遺伝子のマウス胚での発現

カエルの発生学で分子シグナルが詳細に調べられてきましたが、それらの分子がマウス胚でも同様の働きをもつのかどうかの情報の整理が大変です。

Goosecoid

  1. Goosecoid Regulates the Neural Inducing Strength of the Mouse Node Developmental Biology Volume 216, Issue 1, 1 December 1999, Pages 276-281
  2. Gastrulation in the mouse: the role of the homeobox gene goosecoid M BlumSJ GauntKWY Cho, H Steinbeisser, B Blumberg, D Bittner, EM De Robertis Cell, 1992 本文有料
  3. TGIF1 and TGIF2 regulate Nodal signaling and are required for gastrulation.  January 2010Development 137(2):249-59 DOI:10.1242/dev.040782 https://www.researchgate.net/figure/Regulation-of-goosecoid-expression-by-Tgifs-AEmbryos-of-the-indicated-ages-and_fig6_40812258 
    (C)Expression of goosecoid in 8.0 dpc embryos of the indicated genotypes was analyzed by in situ hybridization. (D)Sections through the embryos in C.

    Cがgoosecoidの発現。nodeに局在していることがわかります。

Chordin

下の図でaがchordinのin situ hybridazation (mRNAの局在)です。bcはnoggin遺伝子の発現。chordinは原始線条の前側で発現しはじめて原始結節に局在したと本文で説明されていますが、図には向きなどの記載がなくわかりにくいです。Chordin遺伝子をのノックアウトしても表現型は意外なくらいマイルド(図efg)なようです。

The organizer factors Chordin and Noggin are required for mouse forebrain development Nature volume 403, pages658–661 (2000) 10 February 2000  https://www.nature.com/articles/35001072

wntシグナリング分子

https://www.semanticscholar.org/paper/Wnt-signalling-in-mouse-gastrulation-and-anterior-Arkell-Fossat/1ebceb654e1ea878ac1bd663735be63e1a14a0fb

Canonical Wnt Signaling and Its Antagonist Regulate Anterior-Posterior Axis Polarization by Guiding Cell Migration in Mouse Visceral Endoderm Developmental Cell Volume 9, Issue 5, November 2005, Pages 639-650 https://www.sciencedirect.com/science/article/pii/S1534580705003734

体軸形成に関する最近の総説

 

最近の総説&原著論文

  1. In vitro modelling of anterior primitive streak patterning with human pluripotent stem cells identifies the path to notochord progenitors Posted April 22, 2024. bioRxiv https://www.biorxiv.org/content/10.1101/2023.06.01.543323v3.full
  2. Recent advances in understanding cell types during human gastrulation Semin Cell Dev Biol. 2022 May 21;131:35–43. doi: 10.1016/j.semcdb.2022.05.004 https://pmc.ncbi.nlm.nih.gov/articles/PMC7615356/
  3. The Organizer and Its Signaling in Embryonic Development J Dev Biol. 2021 Nov 1;9(4):47. doi: 10.3390/jdb9040047  https://pmc.ncbi.nlm.nih.gov/articles/PMC8628936/ MDPI誌オープンアクセス論文
  4. Mesoderm induction and patterning: insights from neuromesodermal progenitors Semin Cell Dev Biol. 2021 Nov 25;127:37–45. doi: 10.1016/j.semcdb.2021.11.010
  5.  A gene regulatory program controlling early Xenopus mesendoderm formation: network conservation and motifs  Semin Cell Dev Biol. 2017 Mar 22;66:12–24. doi: 10.1016/j.semcdb.2017.03.003
  6. Vertebrate Axial Patterning: From Egg to Asymmetry Adv Exp Med Biol. 2017;953:209–306. doi: 10.1007/978-3-319-46095-6_6  https://pmc.ncbi.nlm.nih.gov/articles/PMC6550305/

心臓はなぜ左側にできるのか?左右軸の決定機構との関係

人間の体は外側から見ると一見、左右対称ですが体の中を見ると、心臓が左側にあり、肝臓は右側にあります。肺の枝の分岐パターンにも左右で違いがあります。これらの左右の違いは、いつ、どのように生じたのでしょうか?

 

Relationship between asymmetric nodal expression and the direction of embryonic turning Published: 09 May 1996  Jérôme Collignon, Isabella Varlet & Elizabeth J. Robertson Nature volume 381, pages155–158 (1996)

マウスの胚における非対称な nodal 発現は、心臓のループ方向と胚の回転と相関しており、左右の体軸経路が脊椎動物で保存されていることを示しています。