Living Mysteries: Meet Earth’s simplest animal Tiny Trichoplax, discovered in a fish tank, provides a window into the origin of animals https://www.snexplores.org/article/living-mysteries-meet-earths-simplest-animal
Evolution of Digestion in Kingdom Animalia http://www.katebrilakis.com/112digestionevolution.html
15.1 Digestive Systems https://opentextbc.ca/biology/chapter/15-1-digestive-systems/
Search Labs | AI による概要
The terms tracheotomy and tracheostomy are often used interchangeably, but there is a slight difference between them:
Tracheotomy: The surgical procedure that involves making an incision in the trachea to create an opening
Tracheostomy: The temporary or permanent opening created by the tracheotomy procedure
Tracheotomy Care: What Is A Tracheotomy UW WISH チャンネル登録者 4670人
下の動画は、気管挿管をしている患者を看護する実際。
TRACHEOSTOMY CARE | SKILLS DEMO That nursing prof チャンネル登録者数 10.8万人 チャンネル登録
Shrestha, A., Samuelsson, L., Sharma, P., Day, L., Cameron-Smith, D., & Milan, A. (2021). Comparing Response of Sheep and Cow Milk on Acute Digestive Comfort and Lactose Malabsorption: A Randomized Controlled Trial in Female Dairy Avoiders. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.603816. 羊乳は摂取後に消化不良症状を増加させることはありませんが、乳糖含有量が低いため呼気中の H2 反応が減少する可能性があります。
Suarez, F., Savalano, D., & Levitt, M. (1995). A comparison of symptoms after the consumption of milk or lactose-hydrolyzed milk by people with self-reported severe lactose intolerance.. The New England journal of medicine, 333 1, 1-4 . https://doi.org/10.1097/00042737-199510000-00027. 重度の乳糖不耐症の人は、乳糖の摂取量を1日240ml以下に制限すると、乳糖消化補助剤の使用が不要となり、腹部の症状を乳糖不耐症と誤認することがあります。
Turpeinen, A., Kautiainen, H., Tikkanen, M., Sibakov, T., Tossavainen, O., & Myllyluoma, E. (2016). Mild protein hydrolysation of lactose-free milk further reduces milk-related gastrointestinal symptoms. Journal of Dairy Research, 83, 256 – 260. https://doi.org/10.1017/S0022029916000066. ラクトースフリーミルクの軽度のタンパク質加水分解により、胃が敏感な成人の胃腸症状が大幅に軽減されますが、腹痛や膨満感には影響しません。
Louwagie, V. (2019). Lactose intolerance.. JAAPA : official journal of the American Academy of Physician Assistants, 32 11, 49-50 . https://doi.org/10.1097/01.JAA.0000586344.04372.e6. 乳糖不耐症は、牛乳を飲むとガスが出たり、胃痛を引き起こしたりすることがありますが、時間の経過とともに改善する可能性があります。
Malysheva, S., Wunderlich, S., Haase, A., Göhring, G., Martin, U., & Merkert, S. (2018). Generation of a human CDX2 knock-in reporter iPSC line (MHHi007-A-1) to model human trophoblast differentiation.. Stem cell research, 30, 117-121 . https://doi.org/10.1016/j.scr.2018.05.015. CDX2Venus ノックイン レポーター iPSC ライン (MHHi007-A-1) は、ヒト栄養芽細胞および腸管分化を研究するための in vitro ツールを提供します。
Boyd, M., Hansen, M., Jensen, T., Perearnau, A., Olsen, A., Bram, L., Bak, M., Tommerup, N., Olsen, J., & Troelsen, J. (2010). Genome-wide Analysis of CDX2 Binding in Intestinal Epithelial Cells (Caco-2)*. The Journal of Biological Chemistry, 285, 25115 – 25125. https://doi.org/10.1074/jbc.M109.089516. CDX2 は、腸上皮細胞内のいくつかの既知および新規の標的遺伝子に直接結合し、腸細胞の増殖と分化を制御する上で重要な役割を果たします。
Hinkel, I., Duluc, I., Martin, E., Guenot, D., Freund, J., & Gross, I. (2012). Cdx2 controls expression of the protocadherin Mucdhl, an inhibitor of growth and β-catenin activity in colon cancer cells.. Gastroenterology, 142 4, 875-885.e3 . https://doi.org/10.1053/j.gastro.2011.12.037. Cdx2 はプロトカドヘリン Mucdhl の発現を制御します。Mucdhl は腸細胞の活動を調節し、大腸癌細胞における腫瘍形成に寄与する可能性があります。
Lorentz, O., Duluc, I., Arcangelis, A., simon-Assmann, P., Kedinger, M., & Freund, J. (1997). Key Role of the Cdx2 Homeobox Gene in Extracellular Matrix–mediated Intestinal Cell Differentiation.The Journal of Cell Biology, 139, 1553 – 1565. https://doi.org/10.1083/JCB.139.6.1553. Cdx2 は細胞外マトリックスを介した腸細胞分化において重要な役割を果たし、分化した絨毛腸細胞の形成を促進し、基底膜成分によるその発現を調節します。
Bonhomme, C., Duluc, I., Martin, E., Chawengsaksophak, K., Chenard, M., Kedinger, M., Beck, F., Freund, J., & Domon-Dell, C. (2003). The Cdx2 homeobox gene has a tumour suppressor function in the distal colon in addition to a homeotic role during gut development. Gut, 52, 1465 – 1471. https://doi.org/10.1136/gut.52.10.1465. Cdx2 は遠位結腸における癌の進行に関与する腫瘍抑制遺伝子であり、腸管発達時の恒常的役割とは異なります。
Beck, F., & Stringer, E. (2010). The role of Cdx genes in the gut and in axial development.. Biochemical Society transactions, 38 2, 353-7 . https://doi.org/10.1042/BST0380353. Cdx 遺伝子は哺乳類の発達において重要な役割を果たしており、Cdx2 は栄養膜分化、軸パターン形成、腸内胚葉の指定に必須である一方、Cdx4 は軸パターン形成と腸の発達において小さな役割を果たします。
Hinoi, T., Lucas, P., Kuick, R., Hanash, S., Cho, K., & Fearon, E. (2002). CDX2 regulates liver intestine-cadherin expression in normal and malignant colon epithelium and intestinal metaplasia.. Gastroenterology, 123 5, 1565-77 . https://doi.org/10.1053/GAST.2002.36598. CDX2 は、消化管の正常組織、化生組織、腫瘍組織における肝臓腸カドヘリンの発現を制御し、腸細胞の運命決定に重要な役割を果たす可能性があります。
Silberg, D., Swain, G., Suh, E., & Traber, P. (2000). Cdx1 and cdx2 expression during intestinal development.. Gastroenterology, 119 4, 961-71 . https://doi.org/10.1053/GAST.2000.18142. 腸の発達中の Cdx1 および Cdx2 タンパク質の相対的発現は、前後パターン形成や、陰窩-絨毛軸に沿った増殖および分化パターンの定義に役割を果たす可能性があります。
Grainger, S., Savory, J., & Lohnes, D. (2009). Cdx2 regulates patterning of the intestinal epithelium.. Developmental biology, 339 1, 155-65 . https://doi.org/10.1016/j.ydbio.2009.12.025. Cdx2 は腸上皮のパターン形成に重要な役割を果たし、E13.5 以降に小腸を幽門胃のような形態に変化させます。
Hunt, P., Whiting, J., Nonchev, S., Sham, M., Marshall, H., Graham, A., Cook, M., Allemann, R., Rigby, P., Gulisano, M., Faiella, A., Boncinelli, E., & Krumlauf, R. (1991). The branchial Hox code and its implications for gene regulation, patterning of the nervous system and head evolution.. Development (Cambridge, England). Supplement, Suppl 2, 63-77 .
Donaldson, I., Amin, S., Hensman, J., Kutejova, E., Rattray, M., Lawrence, N., Hayes, A., Ward, C., & Bobola, N. (2012). Genome-wide occupancy links Hoxa2 to Wnt–β-catenin signaling in mouse embryonic development.Nucleic Acids Research, 40, 3990 – 4001. https://doi.org/10.1093/nar/gkr1240. Hoxa2 転写因子はゲノムを広範囲にカバーしており、マウスの胚発生における Wnt-β-カテニンシグナル伝達を含む数千の遺伝子を制御する可能性があります。knowledge of Hox molecular function in instructing cell fates is lacking 確かに、HOX遺伝子が「位置決め」に関与するということは教科書的に明らかなのですが、いったいどうやって細胞の運命を決定づけているのかというメカニズムの話を聞いたことがほとんどないように思います。vast majority of Hox-binding sites in vivo are unknown ‥ Hoxa2, a member of the Hox paralog group 2, controls the fate of the cranial neural crest that migrates from rhombomere 4 to the second branchial arch (IIBA) in the developing mouse embryo.
Gentile, C., & Kmita, M. (2020). Polycomb Repressive Complexes in Hox Gene Regulation: Silencing and Beyond. BioEssays, 42. https://doi.org/10.1002/bies.201900249.
Mallo, M., & Alonso, C. (2013). The regulation of Hox gene expression during animal development. Development, 140, 3951 – 3963. https://doi.org/10.1242/dev.068346.
Chambeyron, S., Silva, N., Lawson, K., & Bickmore, W. (2005). Nuclear re-organisation of the Hoxb complex during mouse embryonic development. , 132, 2215 – 2223. https://doi.org/10.1242/dev.01813.
Cui, M., Vielmas, E., Davidson, E., & Peter, I. (2017). Sequential Response to Multiple Developmental Network Circuits Encoded in an Intronic cis-Regulatory Module of Sea Urchin hox11/13b.. Cell reports, 19 2, 364-374 . https://doi.org/10.1016/j.celrep.2017.03.039.
Sheth, R., Bastida, M., Kmita, M., & Ros, M. (2014). “Self‐regulation,” a new facet of Hox genes’ function. Developmental Dynamics, 243. https://doi.org/10.1002/dvdy.24019.
Montavon, T., & Soshnikova, N. (2014). Hox gene regulation and timing in embryogenesis.. Seminars in cell & developmental biology, 34, 76-84 . https://doi.org/10.1016/j.semcdb.2014.06.005.
Deschamps, J., & Nes, J. (2005). Developmental regulation of the Hox genes during axial morphogenesis in the mouse. , 132, 2931 – 2942. https://doi.org/10.1242/dev.01897.
Mallo, M., & Alonso, C. (2013). The regulation of Hox gene expression during animal development. Development, 140, 3951 – 3963. https://doi.org/10.1242/dev.068346.
Gendron-Maguire,M., Mallo,M., Zhang,M. and Gridley,T. (1993) Hoxa-2 mutant mice exhibit homeotic transformation of skeletal
elements derived from cranial neural crest. Cell, 75, 1317–1331.
Rijli,F.M., Mark,M., Lakkaraju,S., Dierich,A., Dolle,P. and
Chambon,P. (1993) A homeotic transformation is generated in
the rostral branchial region of the head by disruption of Hoxa-2,
which acts as a selector gene. Cell, 75, 1333–1349.
After the completion of gastrulation, the primitive streak undergoes regression and eventually disappears. Here’s what happens to the primitive streak:
Regression of the Primitive Streak
As gastrulation progresses, the primitive streak begins to regress caudally (towards the tail end of the embryo). This regression process starts around day 20 in human embryonic development.
Formation of the Tail Bud
As the primitive streak regresses, its remaining parts enlarge to produce a midline caudal cell mass called the tail bud or caudal eminence. This structure forms around day 20 in human embryos.
Notochord Development
While the primitive streak is regressing, the notochord begins to develop cranially (towards the head) from the primitive node. The notochord is a rod-like structure that plays a crucial role in providing signals for the development of surrounding tissues.
Disappearance of the Primitive Streak
By day 22 of human embryonic development, the primitive streak has regressed to between 10 and 20% of the embryo’s length.
Complete Disappearance
Around day 26 of human embryonic development, the primitive streak has seemingly disappeared entirely.It’s important to note that while the primitive streak itself disappears, it leaves behind important structures and cell populations that continue to play crucial roles in embryonic development. The disappearance of the primitive streak marks the transition from gastrulation to the next stages of embryonic development, including neurulation and organogenesis.
原始線条は、原腸胚形成期が終わったときには、消えてなくなるですね。
Fate of the primitive streak / Regression of degeneration of primitive streak by 4th week MBBS NAIJA チャンネル登録者数 1820人