Consensusという文献検索のための生成AIを使って、HOX遺伝子の発現制御機構に関する文献をまとめておきます。
HOX遺伝子の発現は、発生時期と空間的な制御に特徴がありますが、この発現様式を制御しているメカニズムはどのようなものでしょうか。
- Hubert, K., & Wellik, D. (2023). Hox genes in development and beyond.. Development, 150 1. https://doi.org/10.1242/dev.192476.
- Hunt, P., Whiting, J., Nonchev, S., Sham, M., Marshall, H., Graham, A., Cook, M., Allemann, R., Rigby, P., Gulisano, M., Faiella, A., Boncinelli, E., & Krumlauf, R. (1991). The branchial Hox code and its implications for gene regulation, patterning of the nervous system and head evolution.. Development (Cambridge, England). Supplement, Suppl 2, 63-77 .
- Donaldson, I., Amin, S., Hensman, J., Kutejova, E., Rattray, M., Lawrence, N., Hayes, A., Ward, C., & Bobola, N. (2012). Genome-wide occupancy links Hoxa2 to Wnt–β-catenin signaling in mouse embryonic development. Nucleic Acids Research, 40, 3990 – 4001. https://doi.org/10.1093/nar/gkr1240. Hoxa2 転写因子はゲノムを広範囲にカバーしており、マウスの胚発生における Wnt-β-カテニンシグナル伝達を含む数千の遺伝子を制御する可能性があります。knowledge of Hox molecular function in instructing cell fates is lacking 確かに、HOX遺伝子が「位置決め」に関与するということは教科書的に明らかなのですが、いったいどうやって細胞の運命を決定づけているのかというメカニズムの話を聞いたことがほとんどないように思います。vast majority of Hox-binding sites in vivo are unknown ‥ Hoxa2, a member of the Hox paralog group 2, controls the fate of the cranial neural crest that migrates from rhombomere 4 to the second branchial arch (IIBA) in the developing mouse embryo.
- Gentile, C., & Kmita, M. (2020). Polycomb Repressive Complexes in Hox Gene Regulation: Silencing and Beyond. BioEssays, 42. https://doi.org/10.1002/bies.201900249.
メカニズムは一言でいえるものではなく、HOX遺伝子の発現が核動態、RNAプロセシング、マイクロRNA、翻訳調節、自己調節、クロマチンの脱凝縮、エピジェネティック修飾などの多様なメカニズムによって制御されることで、発生時期と空間的に特徴的なパターンが生み出されているのだそうです。
HOX遺伝子の発現とその発生時期および空間的制御メカニズム
HOX遺伝子は、動物の頭から尾にかけての軸に沿った発生プログラムを調整する転写因子をコードしています。これらの遺伝子の発現は、発生の時期と空間において厳密に制御されており、その破綻は発生異常や疾患を引き起こすことがあります。以下に、HOX遺伝子の発現制御に関する主要なメカニズムを示します。
クロマチン構造と核内再編成:
HOX遺伝子の発現は、クロマチンの構造変化と核内の再編成によって制御される。クロマチンの「開放」がHOXクラスター内で進行し、これが遺伝子発現の逐次的な活性化に寄与する。
- Mallo, M., & Alonso, C. (2013). The regulation of Hox gene expression during animal development. Development, 140, 3951 – 3963. https://doi.org/10.1242/dev.068346.
- Chambeyron, S., Silva, N., Lawson, K., & Bickmore, W. (2005). Nuclear re-organisation of the Hoxb complex during mouse embryonic development. , 132, 2215 – 2223. https://doi.org/10.1242/dev.01813.
シス調節モジュール(CRM):
HOX遺伝子の発現は、シス調節モジュール(CRM)によって空間的および時間的に制御される。これらのCRMは、発生の異なる段階で異なる転写因子の結合部位を持ち、HOX遺伝子の動的な発現を制御する。
- Cui, M., Vielmas, E., Davidson, E., & Peter, I. (2017). Sequential Response to Multiple Developmental Network Circuits Encoded in an Intronic cis-Regulatory Module of Sea Urchin hox11/13b.. Cell reports, 19 2, 364-374 . https://doi.org/10.1016/j.celrep.2017.03.039.
ポリコーム抑制複合体(PRC):
PRCは、エピジェネティックな修飾を通じてHOX遺伝子のサイレンシングを行い、細胞タイプ特異的な発現を制御する。PRCの結合動態と3Dゲノム組織への影響がHOX遺伝子の制御に重要である。
- Gentile, C., & Kmita, M. (2020). Polycomb Repressive Complexes in Hox Gene Regulation: Silencing and Beyond. BioEssays, 42. https://doi.org/10.1002/bies.201900249.
自己調節メカニズム:
HOXタンパク質自体が、HOX遺伝子ファミリーの空間的ドメインを確立および維持する「自己調節」メカニズムを持つ。これにより、HOXコードの最終的な確立に寄与する。
- Sheth, R., Bastida, M., Kmita, M., & Ros, M. (2014). “Self‐regulation,” a new facet of Hox genes’ function. Developmental Dynamics, 243. https://doi.org/10.1002/dvdy.24019.
遺伝子クラスターの組織化:
HOX遺伝子は、ゲノム上の位置に応じて発現の時間と場所が決まる「共線性」を示す。この共線性は、原始線条における逐次的な遺伝子活性化を通じて、胚の前後軸に沿った発現パターンを決定する。
- Montavon, T., & Soshnikova, N. (2014). Hox gene regulation and timing in embryogenesis.. Seminars in cell & developmental biology, 34, 76-84 . https://doi.org/10.1016/j.semcdb.2014.06.005.
- Deschamps, J., & Nes, J. (2005). Developmental regulation of the Hox genes during axial morphogenesis in the mouse. , 132, 2931 – 2942. https://doi.org/10.1242/dev.01897.
RNAプロセシングとマイクロRNA:
HOX遺伝子の発現は、RNAプロセシングやマイクロRNAによっても制御される。これらのメカニズムは、HOX遺伝子の発現出力を調整し、発生中のロバスト性を確保する。
- Mallo, M., & Alonso, C. (2013). The regulation of Hox gene expression during animal development. Development, 140, 3951 – 3963. https://doi.org/10.1242/dev.068346.
HOX遺伝子の発現は、クロマチン構造の変化、シス調節モジュール、ポリコーム抑制複合体、自己調節メカニズム、遺伝子クラスターの組織化、RNAプロセシングおよびマイクロRNAなど、複数のメカニズムによって厳密に制御されています。これらの多層的な制御は、発生過程におけるHOX遺伝子の正確な発現を保証し、動物の正常な発生を支えています。
参考論文
- Gendron-Maguire,M., Mallo,M., Zhang,M. and Gridley,T. (1993)
Hoxa-2 mutant mice exhibit homeotic transformation of skeletal
elements derived from cranial neural crest. Cell, 75, 1317–1331. - Rijli,F.M., Mark,M., Lakkaraju,S., Dierich,A., Dolle,P. and
Chambon,P. (1993) A homeotic transformation is generated in
the rostral branchial region of the head by disruption of Hoxa-2,
which acts as a selector gene. Cell, 75, 1333–1349.