癒着防止バリアの最新研究:種類・効果・臨床応用の進展
手術後の癒着は、腹部や心臓など多くの外科手術で頻発し、慢性疼痛や不妊、腸閉塞など深刻な合併症を引き起こします。癒着防止バリアは、物理的に組織を分離し癒着を防ぐ有効な手段として注目されており、近年は多様な材料や機能を持つ新規バリアの開発が進んでいます。
主な癒着防止バリアの種類と特徴
バリアの種類・材料 |
特徴・利点 |
主な課題・制限 |
引用 |
ポリマー系ハイドロゲル |
注射・スプレー可能、組織適合性・生分解性が高い |
固定力や持続性に課題 |
(Mayes et al., 2020; Yang et al., 2017; Li et al., 2020; Fang et al., 2022; Wang et al., 2024; Zhang et al., 2024; Shi et al., 2025; Li et al., 2017; Feng et al., 2019; Fujita et al., 2020; Cui et al., 2024; Song et al., 2024; Huang et al., 2024; Chou et al., 2017; Broek et al., 2014; Wu et al., 2017; Arnold et al., 2000; Zeng et al., 2022; Wei et al., 2009; Wang et al., 2024) |
形状記憶ポリウレタン膜 |
低侵襲手術での自動展開、優れた機械的適合性 |
新規材料のため臨床実績が少ない |
(Wang et al., 2024) |
ゼラチン/ポリカプロラクトン膜 |
生体吸収性、心臓手術後の癒着防止 |
長期的な安全性データが必要 |
(Feng et al., 2019) |
光応答性・ROS応答性ハイドロゲル |
炎症制御・抗酸化作用を併せ持つ |
合成や操作の複雑さ |
(Zhang et al., 2024; Cui et al., 2024; Huang et al., 2024) |
市販膜(Seprafilm®等) |
臨床実績豊富、一定の効果 |
取扱い困難、適用部位に制限 |
(Mayes et al., 2020; Shi et al., 2025; Broek et al., 2014; Arnold et al., 2000; Wei et al., 2009) |
Figure 1: 癒着防止バリアの種類と特徴を比較した表
効果と臨床応用
- ポリマー系ハイドロゲルや新規膜は、動物モデルや一部臨床試験で市販品(Seprafilm®等)と同等またはそれ以上の癒着防止効果を示しています (Mayes et al., 2020; Yang et al., 2017; Li et al., 2020; Fang et al., 2022; Wang et al., 2024; Zhang et al., 2024; Shi et al., 2025; Li et al., 2017; Feng et al., 2019; Fujita et al., 2020; Cui et al., 2024; Song et al., 2024; Huang et al., 2024; Chou et al., 2017; Broek et al., 2014; Wu et al., 2017; Arnold et al., 2000; Zeng et al., 2022; Wei et al., 2009; Wang et al., 2024)。
- 形状記憶や光応答性、ROS応答性などの機能を持つバリアは、操作性や組織適合性、炎症制御など多面的な利点が報告されています (Wang et al., 2024; Zhang et al., 2024; Cui et al., 2024; Huang et al., 2024)。
- メタアナリシスでは、酸化再生セルロースやヒアルロン酸/カルボキシメチルセルロース膜が癒着発生率や再手術率を有意に低減し、安全性も高いとされています (Broek et al., 2014; Arnold et al., 2000)。
研究の進展と今後の課題
- 2000
- 1 paper: (Arnold et al., 2000)- 2009
- 1 paper: (Wei et al., 2009)- 2014
- 1 paper: (Broek et al., 2014)- 2017
- 4 papers: (Yang et al., 2017; Li et al., 2017; Chou et al., 2017; Wu et al., 2017)- 2019
- 1 paper: (Feng et al., 2019)- 2020
- 3 papers: (Mayes et al., 2020; Li et al., 2020; Fujita et al., 2020)- 2022
- 2 papers: (Fang et al., 2022; Zeng et al., 2022)- 2024
- 6 papers: (Wang et al., 2024; Zhang et al., 2024; Cui et al., 2024; Song et al., 2024; Huang et al., 2024; Wang et al., 2024)- 2025
- 1 paper: (Shi et al., 2025)Figure 2: 癒着防止バリア研究の発展と主要論文の時系列
- 近年は、注射・スプレー型や自己修復型、免疫調節機能を持つバリアなど、より実用的かつ多機能な材料開発が進行中です (Zhang et al., 2024; Cui et al., 2024; Song et al., 2024; Huang et al., 2024; Zeng et al., 2022; Wang et al., 2024)。
- 依然として、長期的な安全性、操作性、コスト、臨床での普及率向上が課題とされています (Shi et al., 2025; Li et al., 2017; Broek et al., 2014; Wu et al., 2017)。
Summary
癒着防止バリアは、手術後の合併症予防に有効であり、従来の膜型から高機能なハイドロゲルまで多様な選択肢が開発されています。今後は、操作性・安全性・コストのバランスを考慮した臨床応用の拡大と、長期的な有効性・安全性の検証が重要です。
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
References
Mayes, S., Davis, J., Scott, J., Aguilar, V., Zawko, S., Swinnea, S., Peterson, D., Hardy, J., & Schmidt, C. (2020). “Polysaccharide-based films for the prevention of unwanted postoperative adhesions at biological interfaces”.. Acta biomaterialia. https://doi.org/10.1016/j.actbio.2020.02.027
Yang, Y., Liu, X., Li, Y., Wang, Y., Bao, C., Chen, Y., Lin, Q., & Zhu, L. (2017). A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability.. Acta biomaterialia, 62, 199-209. https://doi.org/10.1016/j.actbio.2017.08.047
Li, Z., Liu, L., & Chen, Y. (2020). Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier.. Acta biomaterialia. https://doi.org/10.1016/j.actbio.2020.04.034
Fang, Y., Huang, S., Gong, X., King, J., Wang, Y., Zhang, J., Yang, X., Wang, Q., Zhang, Y., Zhai, G., & Ye, L. (2022). Salt sensitive purely zwitterionic physical hydrogel for prevention of postoperative tissue adhesion.. Acta biomaterialia. https://doi.org/10.1016/j.actbio.2022.12.045
Wang, X., Fadlilah, F., Yang, Q., Hong, Y., Wu, D., Peng, M., Peng, X., Wu, J., & Luo, Y. (2024). A Biodegradable Shape Memory Polyurethane Film as a Postoperative Anti-adhesion Barrier for Minimally Invasive Surgery.. Acta biomaterialia. https://doi.org/10.1016/j.actbio.2024.09.018
Zhang, T., Huang, Y., Gong, Y., Shi, X., Xiao, D., Ren, L., Dai, X., Zeng, Z., & Zhao, C. (2024). A ROS-responsive and scavenging hydrogel for postoperative abdominal adhesion prevention.. Acta biomaterialia. https://doi.org/10.1016/j.actbio.2024.06.027
Shi, K., Li, T., Hu, X., Chen, W., Yu, Y., Bei, Z., Yuan, L., Tong, Q., Liu, J., Fan, Q., Qian, Y., & Qian, Z. (2025). Injectable and Sprayable Thermoresponsive Hydrogel with Fouling-Resistance as an Effective Barrier to Prevent Postoperative Cardiac Adhesions.. Advanced science, e2500731. https://doi.org/10.1002/advs.202500731
Li, J., Feng, X., Liu, B., Yu, Y., Sun, L., Liu, T., Ding, J., & Chen, X. (2017). Polymer materials for prevention of postoperative adhesion.. Acta biomaterialia, 61, 21-40. https://doi.org/10.1016/j.actbio.2017.08.002
Feng, B., Wang, S., Hu, D., Fu, W., Wu, J., Hong, H., Domian, I., Li, F., & Liu, J. (2019). Bioresorbable electrospun gelatin/polycaprolactone nanofibrous membrane as a barrier to prevent cardiac postoperative adhesion.. Acta biomaterialia, 83, 211-220. https://doi.org/10.1016/j.actbio.2018.10.022
Fujita, M., Policastro, G., Burdick, A., Lam, H., Ungerleider, J., Braden, R., Huang, D., Osborn, K., Omens, J., Madani, M., & Christman, K. (2020). Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nature Communications, 12. https://doi.org/10.1101/2020.12.29.424755
Cui, F., Shen, S., , X., & Fan, D. (2024). Light‐Operated Transient Unilateral Adhesive Hydrogel for Comprehensive Prevention of Postoperative Adhesions. Advanced Science, 11. https://doi.org/10.1002/advs.202403626
Song, W., Lee, C., Jeong, H., Kim, S., & Hwang, N. (2024). Sprayable anti-adhesive hydrogel for peritoneal macrophage scavenging in post-surgical applications. Nature Communications, 15. https://doi.org/10.1038/s41467-024-52753-0
Huang, Y., Dai, X., Gong, Y., Ren, L., Luo, Y., Sun, Y., Chen, M., Jiang, J., Guan, Z., & Zhao, C. (2024). ROS-responsive sprayable hydrogel as ROS scavenger and GATA6+ macrophages trap for the prevention of postoperative abdominal adhesions.. Journal of controlled release : official journal of the Controlled Release Society. https://doi.org/10.1016/j.jconrel.2024.03.051
Chou, P., Chen, S., Chen, C., Chen, S., Fong, Y., & Chen, J. (2017). Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion.. Acta biomaterialia, 63, 85-95. https://doi.org/10.1016/j.actbio.2017.09.010
Broek, R., Stommel, M., Strik, C., Laarhoven, C., Keus, F., & Goor, H. (2014). Benefits and harms of adhesion barriers for abdominal surgery: a systematic review and meta-analysis. The Lancet, 383, 48-59. https://doi.org/10.1016/S0140-6736(13)61687-6
Wu, W., Cheng, R., Neves, J., Tang, J., Xiao, J., Ni, Q., Liu, X., Pan, G., Li, D., Cui, W., & Sarmento, B. (2017). Advances in biomaterials for preventing tissue adhesion. Journal of Controlled Release, 261, 318–336. https://doi.org/10.1016/j.jconrel.2017.06.020
Arnold, P., Green, C., Foresman, P., & Rodeheaver, G. (2000). Evaluation of resorbable barriers for preventing surgical adhesions.. Fertility and sterility, 73 1, 157-61. https://doi.org/10.1016/S0015-0282(99)00464-1
Zeng, H., Liu, X., Zhang, Z., Song, X., Quan, J., Zheng, J., Shen, Z., Ni, Y., Liu, C., Zhang, Y., & Hu, G. (2022). Self-healing, injectable hydrogel based on dual dynamic covalent cross-linking against postoperative abdominal cavity adhesion.. Acta biomaterialia. https://doi.org/10.2139/ssrn.4084248
Wei, C., Hou, C., Gu, Q., Jiang, L., Zhu, B., & Sheng, A. (2009). A thermosensitive chitosan-based hydrogel barrier for post-operative adhesions’ prevention.. Biomaterials, 30 29, 5534-40. https://doi.org/10.1016/j.biomaterials.2009.05.084
Wang, S., Zheng, Y., Gao, Y., He, J., Lv, F., Bu, Y., Liu, K., Zhang, Y., Wen, J., Wang, L., Wang, K., & Zhang, X. (2024). In situ crosslinked injectable chondroitin sulfate hydrogel for preventing postoperative adhesion.. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 180, 117495. https://doi.org/10.1016/j.biopha.2024.117495
(Consensus.app)