人体の勉強をしていて頭が混乱したので、水晶体と硝子体の区別をメモしておきます。
水晶体は、眼の「レンズ」の部分そのものです。それに対して、硝子体は、眼球の内部の大部分を占める液体の部分を指します。
人体の勉強をしていて頭が混乱したので、水晶体と硝子体の区別をメモしておきます。
水晶体は、眼の「レンズ」の部分そのものです。それに対して、硝子体は、眼球の内部の大部分を占める液体の部分を指します。
能力の低い人ほど自信を持っており、能力が高い人ほど自信がないという不思議な現象のことを、ダンニング・クルーガー効果と呼ぶそうです。
インポスター(imposter)とは、詐欺師や偽者という意味の言葉です。成功しているのに自分に自信ない人のことをインポスター症候群と呼びます。心理学者のポーリン・ローズ・クランスとスザンヌ・アイムスが1978年に提唱した概念で、医学的な意味での病気というわけではありません。インポスター症候群の人は、自分の成功の要因を偶然や運に帰するため、自身の能力に自信を持つことができません。そのため、周りの人をだましているような後ろめたを感じ、偽者であることがばれるのではないかと不安を感じています。
神経堤細胞が、閉じたあとの神経管から上皮‐間葉転換(EMT)によって生じるのか、それとも、神経管が閉じる前もしくは閉じるタイミングで神経外胚葉から上皮‐間葉転換によって生じるのか、はいろいろ総説論文などを見ていると、どうも動物種によって異なるようです。ニワトリでは、神経管が閉じたあとで、あらためて、神経堤細胞が神経管の上部から出てくるようです。それは、神経管上部において、上皮‐間葉転換を促進する遺伝子が発現するのがまず最初のステップであることなどからも明らかです。それに対して、他の動物種では、外胚葉から直接、上皮‐間葉転換が起きて神経堤細胞ができてくるとする図も描かれています。
とすると、EMTでE-カドヘリンの発現が抑制されることが重要なのだとしたら神経管ではそもそもどの種類のカドヘリンが発現しているのだろうという疑問が湧きました。N-カドヘリンのN-は「神経系の(に特有の)」という意味かと思っていたため、それだと話が合わないなと気づいたからです。
下の論文の図などを見ると、E-カドヘリンが外胚葉で、N-カドヘリンが神経系というはっきりした違いがあるわけではまったくないようです。名前と実体がずれているとうことでしょうか
神経板の表皮になる部分との境目あたりは、神経堤細胞になります。神経堤細胞は末梢神経などになる重要な細胞系譜のため、その分化過程は詳細に調べられています。
Molecular signaling directing neural plate border formation Published: 9 July 2024 Int. J. Dev. Biol. 68: 65 – 78 (2024) https://doi.org/10.1387/ijdb.230231me Vol 68, Issue 2https://ijdb.ehu.eus/article/230231me
Fig. 4. Shh- and Noggin-expressing cells prevent or down-regulate Slug expression in the dorsal neural tube and influence the expression of other dorsal neural tube genes.
Figure 2 Induction of Floor Plate Cells in Response to Shh and Chordin In Vivo (N and O) Coexpression of (N) Shh and (O) chordin in the HH st-10 caudal notochord.
Effects of Shh and Noggin on neural crest formation demonstrate that BMP is required in the neural tube but not ectoderm Development (1998) 125 (24): 4919–4930.
https://journals.biologists.com/dev/article/125/24/4919/40053/Effects-of-Shh-and-Noggin-on-neural-crest
神経板と表皮の間の部分は神経堤に分化します。神経管が閉じたあと(ニワトリの場合。他の動物種によっては閉じる直前もしくは同時みたい)、神経堤細胞は上皮間葉転換により運動性を獲得して移動します。神経堤細胞は、感覚神経、自律神経、顔面の頭蓋などに分化することから非常に重要な役割を担う細胞であり、何がこの神経堤細胞を規定するのかは非常に重要なテーマで膨大な研究の蓄積があります。
下の論文は非常に興味深いです。神経板にはFGFが発現していて神経板の分化に必要(誘導でなく、誘導された状態の維持に必須)ですが、神経堤においては、「中程度」にまでFGFシグナリングの強さが弱まっている必要があります。どうやって弱めているかというと、FGFシグナリングの細胞内情報伝達機構のいくつかのシグナル分子をマイクロRNAによって抑制しているというものです。2024年ノーベル生理学医学賞はマイクロRNAの発見者2人に贈られました。もともとは線虫のある遺伝子の発現を抑制するしくみとしてマイクロRNAが発見されましたが、マイクロRNAは線虫に特有の現象などではなく、実は動物全体に普遍的に存在する遺伝子発現制御機構でした。その例として、下の論文が挙げられると思います。
Post-transcriptional tuning of FGF signaling mediates neural crest induction PNAS December 21, 2020 117 (52) 33305-33316
https://www.pnas.org/doi/10.1073/pnas.2009997117
個人的には、外胚葉がBMPを出していて、神経管の上部でもBMPがシグナリングセンターになり、下側に目をやると、脊索が最初シグナリングセンターになってshhシグナルによって神経管の下部をFLOOR PLATEに誘導し(実際の誘導の時期は、神経管になってからではなく、神経板の段階)、今度はFLOOR PLATE自身がshhを分泌するようになるというところが面白いと思います。ゾンビによって自分もゾンビ化されてしまうみたいな。
https://bastiani.biology.utah.edu/courses/3230/db%20lecture/lectures/b15NeuroHH.html
Roof plate天板ではBMPが、Floor plate底板ではshhがシグナルとなって、神経管の上下の端がシグナリングセンターとなり、神経管の内外に対して働きかけます。神経管の内部ではこれらのシグナルによって背腹軸方向の神経細胞のアイデンティティが決定されます。
https://media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fnrn1805/MediaObjects/41583_2005_Article_BFnrn1805_Fig3_HTML.jpg
https://media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fnrn1805/MediaObjects/41583_2005_Article_BFnrn1805_Fig3_HTML.jpg
下のrの文の図は、Roof plateで確かにBMPが発現していることを示す実験データ。BMPシグナリングの下流で転写因子として働くリン酸化SmadもRoof plateに局在しています。
https://www.researchgate.net/figure/The-roof-plate-RP-loses-responsiveness-to-BMP-signaling-a-c-In-situ-hybridization-for_fig1_299420557
神経発生の最初の形態的な変化は、神経板の形成です。これはまず神経板になる部分の細胞の形が縦長に伸びるところから始まります。
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/neural-plate
BMP inhibition initiates neural induction via FGF signaling and Zic genes Leslie Marchal, Guillaume Luxardi, Virginie Thomé, and Laurent Kodjabachian kodja@ibdml.univ-mrs.frAuthors Info & Affiliations Edited by Igor B. Dawid, National Institute of Child Health and Human Development, Bethesda, MD, and approved August 19, 2009 October 13, 2009 106 (41) 17437-17442 https://www.pnas.org/doi/10.1073/pnas.0906352106 neural induction is controlled by BMP inhibition, which activates directly, and, via FGF instructive activity, early neural regulators such as Zic genes.
BMPが外胚葉で発現しており、それが外胚葉の細胞が表皮になるシグナルの役割を果たしています。脊索からはBMPの阻害因子であるchordin, nogginなどが分泌されてその部分の運命を神経系にシフトさせます。もともとあるBMPシグナリングを阻害することで神経誘導が生じるというカラクリは予想外のことで驚きでした。脊索はソニックヘッジホッグ(SHH)も分泌しており、それが神経板に働きかけて将来、神経管のFloor Plate(底板)になる部分を分化させます。底板はそれ自身もshhを発現するようになり、周囲の組織の分化にかかわることになります。BMPは、表皮になる部分に発現していて、神経板になる部分は抑制をうけますが、その中間の部分では、「中程度」の強さのシグナルとして働きます。また、神経管の背側の部分「roof plate」がBMPを発現してシグナルとして、神経管の背腹軸方向の細胞のアイデンティティを決定するのに役割を担います。
https://bastiani.biology.utah.edu/courses/3230/db%20lecture/lectures/b15NeuroHH.html
横からくるBMPシグナルおよびその阻害がメインのシグナルだと思います。
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fnrn1805&psig=AOvVaw1efNk1Wo6aPwMkESSqJcz_&ust=1730606329991000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCKDrsKL4vIkDFQAAAAAdAAAAABAE
Bone morphogenetic protein signalling and vertebrate nervous system development 01 December 2005 Aimin Liu & Lee A. Niswander Nature Reviews Neuroscience volume 6, pages945–954 (2005) https://www.nature.com/articles/nrn1805
https://media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fnrn1805/MediaObjects/41583_2005_Article_BFnrn1805_Fig2_HTML.jpg
FGFやWNTも同様の働きがあるようです。何を図示かは動物種によるかもしれません。レビュー論文ごとに異なる部分があります。
Neural Plate Patterning by Secreted Signals Oliver Wessely ∙ E.M De Robertis NEURON Volume 33, Issue 4p489-491February 14, 2002 derobert@hhmi.ucla.edu https://www.cell.com/fulltext/S0896-6273%2802%2900596-2
22.2 Early embryonic development of the nervous system: Formation of the neural tube and neural crest https://embryology.ch/en/organogenesis/nervous-system/early-embryonic-development-of-the-nervous-system/molecular-mechanisms-in-the-early-development-of-cns/dorso-ventral-polarity-of-neural-tube.html?p=2.2
脊索からBMPの阻害因子が分泌されているのかが気になって、それを示した実験データを探してみました。案外見つからないものです。下の論文の図のMとOはそれみたい。
Current Biology Volume 12, Issue 1p47-52January 08, 2002 Opponent Activities of Shh and BMP Signaling during Floor Plate Induction In Vivo https://www.cell.com/current-biology/fulltext/S0960-9822(01)00631-5
神経板がどのようにして誘導されるかを知るためには、神経板で早い段階で特異的に発現してくる遺伝子が何かを把握するのが重要です。それがわかれば、その遺伝子発現が何によって誘導されたかを考えることができます。
Sox2は、神経板の最も早期の決定的なマーカーであり、神経板のアイデンティティを確立する過程で重要な役割を果たします。
下の論文でSox2の神経板における発現が示されています(in situ ハイブリダイゼーションで転写産物を検出)。パネルAを見ると、通常、Sox2は神経板の前方部分(前脳になる領域)で発現していることがわかります。
Epigenetic activation of Sox2 gene in the developing vertebrate neural plate Mol Biol Cell. 2016 Jun 15;27(12):1921–1927. doi: 10.1091/mbc.E16-01-0042 https://pmc.ncbi.nlm.nih.gov/articles/PMC4907725/
SOX1
SOX1は、神経運命にコミットした外胚葉細胞で最も早期に発現する転写因子の一つであり、神経板の誘導と一致して発現が開始されます。
SOX1遺伝子発現にBMPやFGFが関与するのかconsensus.aiに訊いてみました。BMPで誘導され、FGFで維持されるという回答です。
Inhibition of BMP signaling is sufficient to induce neural markers, including SOX1, in ectodermal explants, suggesting that neural fate is the default state in the ectoderm when BMP signaling is blocked . The use of BMP inhibitors like Noggin and DMH1 can effectively induce SOX1 expression in human-induced pluripotent stem cells (hiPSCs), highlighting the role of BMP antagonists in neural induction .
FGF signaling is necessary for maintaining the early domain of sox gene expression, including SOX1, in neural tissue. Without FGF signaling, this domain can revert to non-neural fates. The combined inhibition of BMP and TGF-β pathways, using small molecule inhibitors, allows for precise regulation of SOX1 expression, which is crucial for proper neural induction and lineage specification.
XASH-3は、神経誘導の非常に早い段階で発現し、神経板の位置を示すマーカーとして機能します。
Gbx2は、神経板の後方化に関与し、神経板のパターン形成において重要な役割を果たします。
N-CAM RNAの発現は、神経誘導の初期応答として、神経板に局在します。
BMPシグナルは表皮への分化を規定するのに対して、BMPシグナルのアンタゴニストが表皮への分化の経路を、神経系への分化へと変更させる働きがある、つまり、神経誘導の分子的な実態はBMPアンタゴニストであるということが明らかになっています。
神経誘導に関しては外胚葉のデフォルトが神経組織への分化で、BMPシグナルが働いたときに外胚葉は表皮外胚葉として分化することが明らかとなった。オーガナイザーの近辺ではBMPと結合するNogginやChordinが発現しており、これらがBMPと結合するために、その近辺ではBMPシグナルが遮断され、神経として分化する。すなわち、神経誘導に関しては当初の発生学者たちが考えたように、ある特別な誘導物質が外胚葉に働いてそれを神経外胚葉として分化させるのではなく、むしろシグナルが入らないデフォルトの状態が神経外胚葉であるということである。
BMPシグナルのアンタゴニストが存在せず、そもそもBMPシグナルすら存在しない状態であれば、デフォルトとしては表皮は神経系に分化する運命にあるというわけです。神経系への分化は非常に特別なことのように感じられるので、それがデフォルトだという発見はかなり意外性が高いことだと思います。
Three secreted factors, Noggin, Chordin, and Follistatin, have been found to possess neural-inducing activity in Xenopus. These secreted factors are expressed in the organizer of gastrula embryos and induce neural tissues in the ectoderm (Sasai et al., 1994; Smith and Harland, 1992; Lamb et al., 1979; Hemmati-Brivanlou et al., 1994). As these factors bind to and antagonize BMP, neural induction is caused by blocking the activation of the BMP pathway, which induces epidermal fates (Piccolo et al., 1996; Sasai et al., 1995; Zimmerman et al., 1996; Fainsod et al., 1997).
Spemann-Mangold organizer and mesoderm induction Makoto Asashima, Yumeko Satou-Kobayashi Cells & Development Available online 1 February 2024, 203903
https://www.sciencedirect.com/science/article/pii/S2667290124000044
中枢神経は、脳と脊髄を纏めた総称です。末梢神経はそれ以外の神経全てです。そう考えると「もれ」も「だぶり」もなくてスッキリしますが、いろいろな説明を読んでいると、わかりにくくて混乱させられます。
末梢神経系とは、中枢神経系以外の神経系、すなわち脳と脊髄以外の神経のことを指します。
https://www.msdmanuals.com/ja-jp/home/09-脳、脊髄、末梢神経の病気/末梢神経疾患と関連疾患/末梢神経系の概要
末梢神経に含まれるものとしては、脳と頭部、顔面、眼、鼻、筋肉、耳をつなぐ神経(脳神経)、脊髄と体の他の部位をつなぐ神経(31対の脊髄神経を含む)、その他、体中に分布している神経細胞が含まれます。
末梢神経は、大きく以下の3つに分けられます。
- 運動神経:全身の筋肉を動かす機能
- 感覚神経:痛み、冷感、触れた感触など、皮膚の感覚や振動、関節の位置などを感じる機能
- 自律神経:血圧・体温の調節や心臓・腸など内臓の働きを調整する機能
https://www.saiseikai.or.jp/medical/disease/neuropathy/
人間の赤ちゃんは母親の子宮の中で発生し、育ちます。母親の外で独立して発生するニワトリの卵や魚やカエルの卵とは異なり、人間の場合、胎児は発生に必要な栄養を母体から得ていますが、母体と胎児を繋ぐのが胎盤です。胎盤のおかげで、赤ちゃんは必要な栄養や酸素を得ているわけです。
「“常位”というのは、胎盤が子宮の正常な位置についているという意味で、胎盤が子宮の出口にかかっていてトラブルを起こしやすい前置胎盤などではないということです。普通のお産では赤ちゃんが娩出した後に胎盤が剥がれますが、ある日突然、胎盤が剥がれてしまう病気なのです」https://jp.moony.com/ja/tips/pregnancy/pregnancy/trouble/pt0261.html