In cell biology, a chiasma (plural: chiasmata) is the point where two homologous (non-sister) chromatids exchange genetic material during the process of meiosis. This exchange occurs through a process called crossing over.
Role of Chiasma in Meiosis
Chiasmata are formed during prophase I of meiosis, specifically in the pachytene stage.
They represent the physical manifestation of the crossover between homologous chromosomes, which involves the reciprocal exchange of genetic segments.
This exchange of genetic material is crucial for generating genetic diversity in gametes.
Formation of Chiasma
Synapsis: Homologous chromosomes (each consisting of two sister chromatids) pair up along their lengths, forming a structure called a bivalent or tetrad.
Crossing Over: The non-sister chromatids within the homologous chromosomes physically break and rejoin at specific points. These points are called chiasmata.
Chiasma Formation: The resulting cross-shaped structure, where the chromatids are physically connected, is the chiasma. It holds the homologous chromosomes together until they are separated during anaphase I of meiosis.
Importance of Chiasma
Chiasmata are critical for genetic recombination, which shuffles alleles between homologous chromosomes, creating new combinations of genes.
They also ensure the proper alignment and separation of homologous chromosomes during meiosis I, preventing errors in chromosome distribution.
In summary, a chiasma is a crossover point between homologous chromatids, playing an essential role in genetic diversity and chromosome segregation during meiosis.
A. 卵胞期にFSH(卵胞刺激ホルモン)が分泌されると、初めは10~20個くらいの卵胞が発育し始めるんだ。でも、その中で「一番元気なやつ」が選ばれて、それが排卵まで成長していくの!✨通常、他の卵胞は途中で成長が止まって「閉鎖卵胞(へいさらんぽう)」と呼ばれる状態になっちゃうんだよね。だから、最終的に排卵されるのはたった1個(まれに2個の場合もある)だけなんだ~。この「どの卵胞が選ばれるか」は、卵胞の中での競争みたいな感じで、ホルモンの感受性(FSHにどれだけ反応するか)とか、エストロゲンの分泌量が大きく関わってるよ。もし、FSHの量が多すぎたりすると、双子とか多胎妊娠のリスクが高まることもあるんだ。
Q. 毎回の排卵は、左右交互に起きるの?
A. 排卵は左右の卵巣が毎回交互に行われる…というイメージがあるけど、実はそんなに規則正しく起こるわけじゃないんだよ~。実際には、片方の卵巣が続けて排卵することもよくあるし、左右どちらかがランダムに選ばれることも多いの。
A. それ、ほんとに鋭い質問だよね!確かに、左右の卵巣が別々に発育してるなら、お互いの卵胞の状況を「見張ってる」わけじゃないし、左右それぞれから1個ずつ排卵されるほうが理屈的には自然に思えるよね~。でも、実際には左右の卵巣が「連携している」みたいな形で、片方の卵胞が優勢になることが多いんだ。その理由をもう少し詳しく説明するね。
2006 Nobel Prize winner Craig Mello UMass Chan Medical School チャンネル登録者数 5760人
The Nobel Prize in Physiology or Medicine 2006 was awarded jointly to Andrew Z. Fire and Craig C. Mello “for their discovery of RNA interference – gene silencing by double-stranded RNA”
The RNase III enzyme DICER is responsible for biosynthesis of short-interfering RNAs (siRNAs) and microRNAs (miRNAs).
DICER processes long double-stranded RNA (dsRNA) precursors into 21–23 bp-long duplexes known as siRNAs [1].
miRNAs are encoded by specific genomic loci and are processed from endogenous hairpin-shaped transcripts that are initially cleaved in the nucleus to a 70-bp miRNA precursor (pre-miRNA) by the Microprocessor complex, which is composed of the RNase III enzyme DROSHA and its partner,
Although both siRNAs and miRNAs are synthesized as duplexes, only one of the two strands, the ‘guide’ strand, is incorporated into the multi-protein complex RNA-induced silencing complex (RISC); the other strand (‘passenger’ strand) is discarded [3].
The guide strand recognizes a target mRNA by Watson-Crick base pairing and, based on the degree of sequence complementarity between the small RNA and target mRNA, either endonucleolytic cleavage or translational repression of the target mRNA follows [4].
In animals, siRNAs are perfectly complementary to their targets, and hence trigger mRNA cleavage,
miRNAs are usually only partially complementary and silence gene expression by translational repression and mRNA decay.
ARGONAUTE (AGO) proteins are at the core of RISC.
In mammals, there are four AGO proteins (AGO1–4). All four can bind small RNAs and trigger translational repression, but only AGO2 possesses endonucleolytic activity and is the catalytic component of RISC [6].
Essential Role for Endogenous siRNAs during Meiosis in Mouse Oocytes Paula Stein,Nikolay V. Rozhkov,Fan Li,Fabián L. Cárdenas,Olga Davydenk,Lee E. Vandivier,Brian D. Gregory,Gregory J. Hannon,Richard M. Schultz Published: February 19, 2015 https://doi.org/10.1371/journal.pgen.1005013 PLOSNEGETICS
Kinetochore fibers. Electron micrograph of a metaphase spindle in a PtK1 cell. Kinetochore microtubules are visible as thin lines extending between the boundary of the spindle pole (curved dashed line) and the kinetochores (K1–K5). Arrows mark microtubules that leave the plane of section; V vesicles, PCM pericentriolar material; scale bar 0.5 µm. Image reproduced with permission from (McDonald et al. 1992)
MAPs (microtubule associated proteins) crosslink antiparallel interpolar microtubules to create a stable midzone that allows kinesin motor proteins to generate sliding forces that push the spindle poles apart (4).
The importance of microtubule-dependent tension in accurate chromosome segregation Angela R. Bunning and Mohan L. Gupta Jr.corresponding author* Front Cell Dev Biol. 2023; 11: 1096333. Published online 2023 Jan 23. doi: 10.3389/fcell.2023.1096333 PMCID: PMC9899852 PMID: 36755973
Interpolar microtubules are dispensable in fission yeast meiosis II Takashi Akera, Masamitsu Sato & Masayuki Yamamoto Nature Communications volume 3, Article number: 695 (2012) Published: 28 February 2012 https://www.nature.com/articles/ncomms1725 The mitotic spindle consists of two types of microtubules. Dynamic kinetochore microtubules capture kinetochores, whereas stable interpolar microtubules serve as the structural backbone that connects the two spindle poles. Both have been believed to be indispensable for cell division in eukaryotes.
J Cell Biol. 2017 Jun 5; 216(6): 1525–1531. doi: 10.1083/jcb.201612064 PMCID: PMC5461028 PMID: 28490474 Review The mechanics of microtubule networks in cell division Scott Forth and Tarun M. Kapoorcorresponding author https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461028/
Motor function in interpolar microtubules during metaphase Author links open overlay panel J.M. Deutsch , Ian P. Lewis Journal of Theoretical Biology Volume 370 , 7 April 2015, Pages 1-10 Journal of Theoretical Biology https://www.sciencedirect.com/science/article/abs/pii/S002251931500020X
The placental membrane, the chorion, prevents the fetal and maternal blood from mixing, while allowing transport of molecules.
The maternal blood in the intervillous space is a mixture of incoming fully oxygenated and deoxygenated blood due to placental oxygen uptake, resulting in an intervillous pool of blood with oxygen partial pressure (PO2) that is relatively lower than that of maternal arterial blood.
the mixed maternal blood in the intervillous space forms the supply of oxygen to the fetus
Gas exchange takes place between maternal and fetal blood through the chorion.
Nutrient-rich and relatively well-oxygenated blood in the fetal capillaries of the placenta is delivered to the fetus via the umbilical vein and
deoxygenated, lower nutrient blood returns back to the placenta from the fetus via the umbilical arteries.
Interleukin-11 alters placentation and causes preeclampsia 子癇前症 features in mice December 11, 2015 112 (52) 15928-15933 https://doi.org/10.1073/pnas.1515076112 PNAS
IL-11 and IL-11Rα immunolocalisation at primate implantation sites supports a role for IL-11 in placentation and fetal development Reprod Biol Endocrinol. 2003; 1: 34. Published online 2003 Apr 11. doi: 10.1186/1477-7827-1-34 PMCID: PMC155642 PMID: 12740032 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC155642/
Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation インターロイキン11の受容体を欠損した雌マウスにおける不妊は、着床に対する子宮応答の異常によるものである Lorraine Robb, Ruili Li, Lynne Hartley, Harshal H. Nandurkar, Frank Koentgen & C. Glenn Begley Nature Medicine volume 4, pages303–308 (1998) Published: 01 March 1998 要旨 妊娠初期において、着床する胚に応答して、周囲の子宮間質は脱落膜と呼ばれる特殊な組織に劇的に変化します。脱落膜は発生中の胚を包み込み、栄養の輸送を促進し、栄養膜細胞の侵入を制限します。本研究では、インターロイキン-11受容体α鎖の欠損を持つ雌マウスが、脱落膜化不全により不妊であることを明らかにしました。時間的解析により、通常の妊娠子宮におけるIL-11の発現は脱落膜化の時期に最大であることが示され、さらに、イン・シチュ・ハイブリダイゼーション法を用いた解析により、発生中の脱落膜細胞でIL-11およびIL-11受容体α鎖の発現が確認されました。これらの観察結果は、IL-11シグナル伝達が女性の生殖においてこれまで認識されていなかった重要な役割を果たしていることを示しています。(ChatGPTによる翻訳)本文有料
Maternal IL-11Rα function is required for normal decidua and fetoplacental development in mice Genes Dev. 1998 Jul 15; 12(14): 2234–2243. doi: 10.1101/gad.12.14.2234 PMCID: PMC317008 PMID: 9679067 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317008/