ギブスの自由エネルギーとは何か?最もわかりやすい説明

ギブスの自由エネルギーが何かを知るために熱力学の教科書を開いても、その定義式G=H-TSからわかるように、まずエンタルピーHが何か、そしてエントロピーSが何かを知っておく必要があり、教科書の章を遡って読み始めない限り、理解に達しません。数式を負いながらの理解はなかなか大変です。そこで、言葉による、最もわかりやすい説明がないかと調べてみました。

それが何か?なぜそれを考えたのか(定義したのか)?それで何ができるのか?それは何ではないか。といった視点での理解も大事かと思います。

ギブスの自由エネルギーを考えるわけ

ある変化が自発的に生じるかどうかは、熱力学の第二法則「孤立系のエントロピーは増大する」というもので判断できます。「系」というのは、任意に決められるわけですが、系と系の外側に区別できるようなものです。例えば、お湯をわかすヤカンを系と考え、ヤカンの外側の部分と区別して考えることができます。ピストンがついたシリンダーであれば、そのシリンダーが系と考えられます。人間という個体を系と考えてもよいし、細胞一つを系と考えてもいいでしょう。ただし重要なことは、系と系と外側との間に、物質の移動やエネルギーの移動があるかどうか。エネルギーの移動も物質の移動もない系が、孤立系と呼ばれます。厳密にいうと、孤立系なんて存在しないんじゃないのということにもなります。すると宇宙全体が、唯一実在する孤立系なのかもしれません。そこで、通常は、自分の興味の対象としての「系」とそれを取り囲む周囲の「系」そしてこの周囲の系は、そのさらに外側とは物質もエネルギーも移動しないと考え、「系」+「その周囲」を合わせて孤立系と考えます。教科書によって使う言葉が多少違うけれども、指している内容は同じです。

熱力学第2法則によれば、全系のエントロピーは減少しない。

∆S全系 =∆S反応+∆S熱浴 ≥0                           (1.2)

しかし、この式そのものはあまり便利ではない。これが述べているのは、全系のエントロピーが減少しないということだけであって、肝心の反応系における変化については何も分からない。‥ 我々にとっては、熱浴に関する詳細は興味がなく、反応系で何が起こるかが関心事である。そこで、上の式から反応系に関する情報だけを抽出することが望ましい。この目的のために、反応系の「ギブス自由エネルギー」という量を次のように定義する。

∆G反応 =∆H反応−T∆S反応                           (1.3)

(京都大学OCW 安藤耕司 第1章 熱力学の復習  第4回 自発的過程と自由エネルギー 基礎物理化学B )

ギブスの自由エネルギーとは

ウェブ上に大部の大学化学の教科書が公開されていました。

自由エネルギー変化は、以前に特定された自発性の指標ΔS宇宙と直接関連しており、プロセスの自発性についての信頼できる指標です。‥ 自由エネルギーG=ΔH−TΔSは、プロセスによって生成されるエネルギーΔHと、周囲に失われるエネルギーTΔSを表しているものと解釈することができます。生成されたエネルギーと失われたエネルギーの差は、そのプロセスによって有用な仕事をするために利用可能な(すなわち「自由な」)エネルギーΔGです。(第16章 熱力学 Chemistry 2nd Edition)

生物版もありました。

熱力学の第二法則によれば、すべてのエネルギー伝達は熱のような使用不可能な形でエネルギーを失うことを含み、その結果エントロピーが生じることを思い出してください。ギブズの自由エネルギーは、私たちがエントロピーを考慮したうえで利用可能であるような、化学反応で起こるエネルギーのことを特に指しています。言い換えれば、ギブズの自由エネルギーは、使用可能なエネルギー、つまり仕事をするために利用可能なエネルギーのことです。 ‥ ΔGを計算するには、系の総エネルギー変化からエントロピーとして失われたエネルギー量(ΔSと表示)を引きます。科学者たちはこの系の総エネルギー変化のことをエンタルピーと呼び、私たちはそれをΔHと示します。ΔGの計算式は次のとおりです。ここで、記号Tはケルビン単位での絶対温度(摂氏温度 + 273)を表します: ΔG = ΔH — TΔS (第6章 代謝 生物学 第2版  Japanese translation of “Biology 2e”)

その他の参考ウェブ記事

  1. 「エントロピーから読み解く生物学」を読み解く -.hiroshima-u.ac.jp
  2. https://icho.csj.jp/36/pre/P-5ans.pdf
  3. https://www.bio.phys.tohoku.ac.jp/~ohki/Physics_C/Aug11.pdf
  4. http://kek.soken.ac.jp/sokendai/wp-content/uploads/15phy_MSS.pdf