月別アーカイブ: 2022年2月

コレスポンディングオーサー(correspoinding author、責任著者)とは?

correspoinding author(コレスポンディングオーサー、責任著者)とは、研究成果を論文発表するときに、著者が複数いる場合の一番の責任を負う著者のことです。correspoindingという名前が示すとおり、論文に関する第三者とのやりとりは、correspoinding authorが行います。つまり、雑誌への投稿の際の雑誌エディターとのやりとりや、出版後に誰か他の研究者が論文に関することを聞きたいときの連絡先でもあります。日本語で責任著者と訳されることからわかるように、単にやり取りをする窓口という意味以上に、論文報告する内容に関する責任を負います。研究者の間では、日常会話ではコレスポと略すことが多いです。

誰がコレスポになるのか

通常はラボのボスがコレスポになります。それは、ラボのボスが研究を立案し、研究資金を獲得し、研究人員を配置し(部下にテーマを与え)、論文を執筆することが多いからです。しかし、ラボの運営体制によっては、中ボスがコレスポになることや、実際に仕事をした部下がコレスポになることもなくはありません。このあたりは、誰がオーサーになるべきかという問題も含めて、分野によって、あるいは業界(学部)などによっても、文化・慣習が異なる場合があるので、一概に何が正しくて、何がおかしいとも言えないものがあります。つまり曖昧な線引きになっているため、俺が当然コレスポになるべきだ、いや、コレスポは私でしょう、というラボ内での意見の相違が生まれることもよくあります。

コレスポでもめる一番のパターンは、ラボのボス(教授)が実質的にはほとんど貢献していないにも関わらずコレスポを要求するパターンです。その場合の正当性の根拠は、自分のラボだから、自分が研究資金を稼いできたのだから、というものです。教科書的に言えばそれだけではオーサーシップにすら値しないということになっていますが、そのような教科書的なルールが実社会で行われているのは、自分は見たことがありません。場合によってはボスはあまり研究費を獲っていなくて、研究を実際に行った部下が自ら研究費も獲得して、研究を立案し、実験を実施し、データを解析して論文まで執筆するということもあります。その場合には、実際に研究を行った部下がコレスポンディングオーサーになるのが、「研究の倫理の教科書」的には正しいと思いますが、現実はというと、権力を持つ立場の人間がコレスポを主張することがあるでしょう。その場合に、どこをお落としどころにするかということに関しては、正解はありません。なぜなら、部下の立場でボスと喧嘩してもその部下に勝ち目がないことが多いですし、かりに主張を押し通せても、しこりが残ってしまって、長期的には必ずしも良いとは限らないからです。

2つのラボが対等の共同研究をした場合にも、コレスポをどちらのラボのボスが取るかで意見の相違が生じる可能性があります。これはもう2つのラボの力関係で決まるのではないでしょうか。オーサーシップでもめてしまって、折角共同研究で良い成果を得て論文発表したにも関わらず、その後の関係が冷え切ってしまうということもあるかもしれません。人間関係なので、難しいところです。

 

コレスポは何人まで可能?

責任著者は通常一人ですが、ジャーナルによっては複数の人が責任著者になっている論文があります(Co-corresponding author)。下のエディテージの記事を見ると、コ・コレスポンディングオーサーを認める雑誌は多くはないが存在するようです。基礎系の雑誌か、臨床系の雑誌かでもその割合は異なるかもしれません。自分は基礎系のジャーナルにしか論文を出したことがありませんが、責任著者が複数ということは比較的よく見かけたように思います。

While some journals allow the practice of including two corresponding authors, many journals do not. (Does your target journal allow more than one corresponding author? A case study editage insights)

コレスポが何人までOKなのかは、雑誌の投稿規定に明示されていないこともありますが、明示している雑誌もあります。

松本裕行・宮原孝夫『数理統計学入門』学術図書出版社(1990年)

この教科書は、120ページと比較的薄い教科書で、紙面も余白がわりとあってスッキリとしていて読みやすく、それでいて、説明は日本語も多用してわかりやすく、数学的にきっちりと説明がなされていくので、とても理解しやすいと思います。定義、定理、証明の繰り返しで構成されているのですが、その途中途中にある日本語の解説がわかりやすいので、ありがちな数学書における堅苦しさや無味乾燥さがなくて、良いです。

統計の教科書がわかりにくい理由は、多くの場合事実を列挙しているだけで、それらの数式や定理がどこから来たのかが説明されていなかったせいなのではないかと思います。「統計学」の教科書ではなく、「数理統計学」の教科書を読めばよかったわけですが、多くの「数理統計学」の教科書は、数学の本になっていて、読むのが困難です。松本裕行・宮原孝夫『数理統計学入門』学術図書出版社(1990年)は、数学的な厳密さと、日本語の説明のわかりやすさ、取り上げる内容の絞り込みのバランスが絶妙で、初学者が勉強していて満足度が高い教科書だと思います。

ジャズピアニストのビル・エバンスが、即興演奏をどうやって学んだらいいかについて解説した動画があります。彼は、誰かの演奏を聞いてその表面的な派手さを真似するのではなく、自分で自分が何を弾いているのかを理解できるくらい基本的なことからまず始めなさいと言っています。この教科書はまさに、統計学の基本事項の徹底理解にうってつけだと思います。

Bill Evans – The Creative Process and Self-Teaching

分散はnで割るのかn-1で割るのか?n-1で割ったほうをなぜ不偏分散と呼ぶのか

統計の教科書を読み始めてすぐに挫折する理由は、分散の説明が教科書によってまちまちなせいで頭が混乱させられるからです。分散の定義がある教科書では 1/n Σ (xi-m)^2なのに別の教科書だと 1/(n-1) Σ (xi-m)^2 のようにnでなくn-1で割っています(nは標本の数、mは標本の平均)。そして、n-1で割るほうを不偏分散と呼んでいます。

ちゃんとした教科書であれば、それぞれを正しく呼び分けていることも多いのですが、統計ソフトの場合、分散と言えば、n-1で割るほう(不偏分散)で、統計ソフトの使い方の教科書などでは特に、不偏分散のことを単に分散と呼んでいたりするので、混乱するわけです。

不偏という耳慣れない日本語の意味を知りたいのですが、「偏りが無い」と日本語で説明されても意味不明です。もうこのあたりで嫌気が差して教科書を閉じることになります。

ちゃんと理解したければ、「不偏推定量」なる概念を理解する必要がありました。前提として、「母集団」から標本を抽出するという操作の理解も大事です。母集団には母集団の分布の特性を表す量があります。例えば、平均値(母平均と呼ぶ)などが特性を表す値の一例です。母集団から標本をとってきた場合に、標本から計算される平均値(標本平均と呼ぶ)もあります。標本平均と母平均との関係はどうなっているの?というのが大事なポイントになります。分散についても同様に考えることができます。母集団の分散(母分散と呼ぶ)と、標本から得られた分散(標本分散)との関係はどうなっているのでしょうか。

標本を得るという操作を行うごとに、実際に得られる標本の値は毎回異なるわけですから、標本抽出を何回も行えば、標本平均も毎回異なります。標本分散も毎回異なります。そこで、「標本平均」の期待値や、標本分散の期待値を考えることになります。標本平均の期待値がもし母平均と一致していれば、標本平均は不偏推定量であるという言い方をします。実際、標本平均の期待値を計算すると母平均に一致するので、標本平均は不偏推定量です。分散の場合はどうでしょうか。標本分散の期待値を計算すると、実は母分散とは一致しません。なので標本分散(nで割る方)は不変推定量ではないのです。じゃあ、母分散の不偏推定量になっているのは、どのような量なのでしょうか?実はn-1で割る方が、期待値を計算したときに母分散に一致するので、不偏推定量になっているのです。このことから、n-1で割る定義のほうを不偏分散と呼ぶわけです。不偏推定量になっている分散なので不偏分散と呼ぶ、なるほど納得です。

標本分散の期待値を実際に計算してみると、このことが良くわかります。母分散がσ^2だったとして、標本分散s^2の期待値を計算すると、

期待値E[s^2] = …. = (n-1)/n σ^2 となります。母分散であるσ^2には一致せず、(n-1)/n という係数がかかるという違いがあるわけです。なので(n-1)/n の逆数であるn/(n-1)を標本分散にかけておけば、つまり、

n/(n-1)1/n Σ (xi-m)^2 = 1/(n-1) Σ (xi-m)^2 なる数を考えれば、その期待値は母分散に一致します。なので、不偏分散 1/(n-1) Σ (xi-m)^2 は、 分母にn-1が来ているのです。

これらの議論は少し詳しい統計の教科書や数理統計学の教科書に説明されています。自分が参考にしたのは、松本裕行・宮原孝夫『数理統計学入門』学術図書出版社(1990年)です(72ページ目)。

 

主要な確率分布と標本分布の確率密度関数と平均、分散

確率・統計で用いられる言葉の定義

確率変数とは、ある確率に基づいた試行の結果として値が定まるような変数のことです。例えば、サイコロを振るという試行を考えた場合に、確率変数Xは、1から6までの自然数の値を取り得ます。各々の目が出る確率は、1/6になります。

確率関数とは、確率変数が離散型の場合に、確率を規定する関数のこと。確率pで当たりくじが出るくじをn回引いたときにr回当たりが出る確率の確率関数は、

P(X=r)=f(x)=nCr p^r (1-p)^n-r

となります。

確率分布とは、確率関数と確率変数との対応関係のことです。上の式の場合は、二項分布とよばれる確率分布です。

確率密度関数とは、確率変数が連続型の場合に、P(a=< X <=b)がaからbまでの積分で確率が求まるような関数f(x)のことです。

分布関数とは、累積分布関数とも呼ばれますが、F(x):=P(X<=x)で定義されるような関数F(x)のこと。

期待値とは、離散型確率変数Xの場合は、Xと、Xの確率との積を全てのXに関して足し合わせたもののことです。連続型確率変数Xの場合は、確率変数と確率密度関数との積をマイナス無限大からプラス無限大まで積分したものになります。

m次モーメントとは、確率変数Xのm乗の期待値$E[X^m]$のこと。

確率母関数$G _X(t)$は、tのX乗の期待値$E[t^X]$として定義されます。

$G _X(t)\stackrel{\mathrm{def}}{=}E[t^X]$

積率母関数モーメント母関数)$M _X(t)$は、「eのtX乗」の期待値$E[e^{tX}]$として定義されます。

$M _X(t)\stackrel{\mathrm{def}}{=}E[e^{tX}]$

さて用語のおさらいが終わったところで、よく出てくる確率分布を纏めておきます。

離散型確率変数の確率分布

離散一様分布

ベルヌーイ分布

二項分布

ポアソン分布

幾何分布

超幾何分布

負の二項分布多幸分布

多項分布

連続型確率変数の確率分布

正規分布

指数分布

ガンマ分布

ベータ分布

コーシー分布

対数正規分布

ワイブル分布

Gompertz分布

ロジスティック分布

標本に対する確率分布(標本分布)

母集団から抽出する「標本」は確率変数とみなせるので、標本分布は確率分布のことなのですが、習慣的にか標本分布という言葉を使うようです。

カイ2乗分布

t分布

F分布

参考図書

  1. 日本統計学会公式認定 統計検定1級対応 統計学 日本統計学会編

参考(LaTex)

  1. https://mathlandscape.com/latex-equal/
  2. https://48n.jp/blog/2016/07/12/sample-of-formula/
  3. https://www.applstat.gr.jp/wp/wp-content/themes/jsas/common/img/readme.pdf
  4. https://atatat.hatenablog.com/entry/2020/05/01/230319

[医学論文の種類]Editoral(エディトリアル)とは?

一口に論文と言っても、様々な種類があります。新しい発見を報告する「原著論文」(Original article)がなんといっても重要であり、これが研究者を評価する際の最重要項目になります。その分野の専門家であれば、領域の動向をまとめたReview Article(レビュー論文)を書くことも多いでしょう。Review Article の「review」と、論文査読{review)の「review」とは、全く別物ですので混同しないように。念のため。さて、医学論文ではEditorialという論文の形式もよく目にします。

医学においては、著書としての学術論文はその内容や様式により、基本的には原著症例報告総説短報告手紙文などにまとめて分類される。論説(Editorial)は学術論文の範疇からは除外される。(https://seiyogakuin.ac.jp/guide/criticism/doc/055.pdf)

これは、専門家が特定の分野に関して簡潔にまとめたものだそうです。

エディトリアルとは、現在重要視されている問題や、今後大きく議論されると予測されるトピックや研究に言及した論文を指します。‥ 雑誌に掲載された特定の論文内容や研究方法に言及する場合はあります。(巻頭辞(エディトリアル)の書き方について genius.jp.net)

特定の論文に関するコメントもEditorialに含まれるようです。

NEJM誌はEditorial、Lancet誌はCommentとしていますが、要は論文著者以外で当該分野に詳しい人が書く批評です。(医学論文の読み方(2) 西村多寿子のブログ)

編集後記」editorials は、医学学術誌のその号に掲載された様々な論文を批評した論文です。世界的に著名な学術誌では、論文ごとに editorial を掲載することが一般的で、その号に掲載された original articles を批評する editorials が掲載されます。(Menu 15 医学論文の抄読会を楽しく乗り切る方法 icrip.jp)

参考サイト

  1. New England Journal of Medicine (NEJM) Editorial検索
  2. Lancet Comments

免疫学 プライミングとは?

プライミングとは プライミングという現象が見られる例

免疫系を賦活するための予備刺激 少量のLPS処理によるpro-IL-1βの誘導,いわゆる“プライミング” (プライミング 実験医学online)

アレルギー反応は1)最初に遭遇したアレルゲンへの曝露時に生じる反応(感作あるいはプライミング相)と、2)感作を受けた後で獲得免疫系が誘導された後に、同じ抗原に曝露された時の反応(エフェクター相)に区別することができる(図2)(2)。https://www.jbpo.or.jp/med/jb_square/autoimmune/immunology/im09/01.php

cDC(標準型樹状細胞)2細胞は、通常DCファミリーに起因する一般的な機能、MHCクラスII上の抗原提示を介したナイーブCD4+ T細胞のプライミング、および共刺激に関与します。https://www.thermofisher.com/jp/ja/home/life-science/cell-analysis/cell-analysis-learning-center/immunology-at-work/dendritic-cell-overview.html

Interleukin-12 (IL-12) is a heterodimeric cytokine produced primarily by antigen-presenting cells (monocytes, macrophages, dendritic cells, and B cells). Its production is stimulated by bacteria, bacterial products, and intracellular parasites and enhanced by priming with granulocyte-macrophage colony-stimulating factor (CM-CSF) and interferon-gamma (IFN-gamma) or inhibited by IL-10. https://bibgraph.hpcr.jp/abst/pubmed/8613697

好中球のO2-産生には、プライミングという現象が知られている。好中球があらかじめ特定の刺激因子の作用を受けるとプライミングされた状態になり、続いて異なる刺激因子の作用によりO2-産生の著しい亢進が起こる1, 2)。プライミング作用を有する因子として、IL-1、腫瘍壊死因子(tumor necrosis factor; TNF-α)、顆粒球コロニー刺激因子(granulocyte colony-stimulatingfactor; G-CSF)、顆粒球・マクロファージ刺激因子(granulocyte-macrophage colony-stimulatingfactor; GM-CSF)、IL-8などのサイトカインがある3, 4)。http://plaza.umin.ac.jp/j-jabs/35/35.322.pdf

IL-2 は、IL2Rβ鎖および IL2Rγ鎖の両者を発現する抗原特異的なナイーブ T 細胞や NK 細胞を含む隣接細胞にトランスプレゼンテーション(trans-presentation)するため、活性化された DCの表面上に発現する IL2Rαに結合することができます4。この IL-2 のトランスプレゼンテーションは、IL-2 を産生するためにナイーブ T 細胞をプライミングする初期の免疫応答に必要な、高親和性の初期 IL-2 シグナル伝達を促進することが示されています6。https://www.nacalai.co.jp/ss/Contact/pdf/review-IL2-invivogen.pdf

脳波の解析に必要な線形代数の知識

主成分分析(PCA)

独立成分分析(ICA)

 

参考サイト

  1. 脳波解析マニュアル 脳波解析の方法を紹介
  2. ヒトの状態推定をするために脳波の時系列データを如何にモデリングするか 2018-11-09 kenyu-life.com
  3. https://www.slideshare.net/ssuser186f56/eeg-analysis-nonlinear

参考文献

  1. 物理からみた脳波 青木亮三 日本物理学会誌45(9):621-628 (1990).

参考図書

  1. 脳波解析入門 Windows10対応版 EEGLABとSPMを使いこなす 開 一夫 編金山 範明 編 2020年12月09日 東京大学出版会 適切な脳波の計測解析がこの一冊で可能に!脳活動研究に興味のある人必携の書。EEGLAB開発者スコット・マケイグの全面協力を得てチュートリアルを作成。専用ウェブサイトにて、チュートリアルデータや詳細な説明を提供。
  2. 市川 忠彦 新版 脳波の旅への誘い 第2版 ‐楽しく学べるわかりやすい脳波入門 2006/4/24  星和書店
  3. Mike X. Cohen and Jordan Grafman『Analyzing Neural Time Series Data Theory and Practice』Chapter5
  4. 田中 聡久 信号・データ処理のための行列とベクトル- 複素数,線形代数,統計学の基礎 – (次世代信号情報処理シリーズ 1) 2019/7/10  コロナ社
  5. 岡部 靖憲『実験数学 ―地震波,オーロラ,脳波,音声の時系列解析― 』2005年11月10日 朝倉書店 *大学図書館(他キャンパス)に蔵書ある

その他

  1. パッチ式脳波計 https://www.pgv.co.jp/technology-device
  2. 脳の神経細胞が行う掛け算の仕組みを解明