投稿者「PhD」のアーカイブ

医学部の留年率や再試、国家試験合格率などの状況について

留年に対する考え方

 

  1. 医学部は留年が多い?その理由と留年しないポイント 2021.09.262022.09.17 agaroot-medical.com

私立大学医学部の留年、退学の状況

  1. 医学部医学科における国家試験等の状況(令和3年度)(文部科学省)(PDF)

 

 

関西医科大学 医学部医学科

群馬大学医学部医学科

  1. 群馬大医学部「3分の1、約40人が留年」そのうち24人は一人の教授の授業だった 2022/10/23  「週刊文春」編集部
  2. 学生は「アカハラだ」と悲鳴 群馬大医学部3年生「3分の1が留年」の異常事態  2022/10/23 「週刊文春」編集部

東邦大学


医師国家試験合格率

産学連携の始め方、落とし穴、成功の条件と秘訣、失敗事例と成功事例

産学連携入門

  1. 大学研究成果の社会実装マニュアル~誰も教えてくれない発明発掘・特許出願戦略 知財戦略デザイナー派遣事業2021報告書(ナレッジ集) 特許庁 93ページPDF
  2. ここからはじめる! 産学官連携 産学官連携プロジェクトや、大学等の技術シーズを活用した新事業創出に向けて 経済産業省 中部経済産業:64ページの小冊子PDF
  3. 産学官連携のススメ 農林水産・食品分野における産学官連携ガイドブック  16ページ小冊子PDF
  4. 産学官連携による共同研究強化のためのガイドライン【追補版】産学官連携を通じた令和価値創造に向けて 令和2年6月30日 文部科学省 経済産業省 84ページPDF
  5. 内閣府「知財や標準の活用による社会実装を見据えた大学が備えるべき知財ガバナンスの在り方に関する調査」を受託しました テックコンシリエ

産学連携における企業側のメリット

企業が独自で新しい技術や製品やサービスなどの開発を行う場合、材料や設備のほかに必要になるのは「人材」です。専門的なプロジェクトにふさわしい知識や経験をそなえた人材を確保するのは容易なことではありませんが、これができなければコストも時間も無尽蔵にかかってしまいます。産学連携において大学は、人材という側面で企業の強力なパートナーとなり得ます。大学教員(研究者)は何といってもその分野の専門家だからです。この場合の人材とはすなわち知識であり経験であり研究スキルそのものなのです。(産学連携STEP1 何ができる? 産学連携のメリット 信州大学 研究推進部)

産学連携のパターン

  1. 装置産業型:企業が保有したとしてもたまにしか使わない高額の工作機械や測定装置を大学の研究室が保有し、複数の企業が共同研究や委託研究で大学を介して利用する。
  2. 研究員型:大学教員を、企業の研究員あるいは熟練した研究マネジャーとして使う。
  3. れん型:○○大学と共同研究しています、○○先生の試験研究で効果が確かめられました、といった連携事実そのものが主たる目的。
  4. 無償労働力提供型学位研究として、企業の試験研究や実験を大学の学生にさせる。企業は安価に目的が達成でき、教員も自由になる研究費が得られ双方にメリット。

(参考:産学官連携の心得~門前の小僧の経験から〜 東京大学 国際高等研究所サステイナビリティ学連携研究機構 教授 沖 大幹 産学官連携ジャーナル)

オープンイノベーション

  1. オープンイノベーション白書 第二版 JOIC NEDO 変化の激しい競争環境の中で、自社のリソースのみでイノベーションを起すことはもはや不可能です。 ‥ 大企業とベンチャー企業間の協業・連携が急速に増加するとともに、 日本企業においてもコーポレート・ベンチャー・キャピタル (CVC)、ベンチャー企業を支援するインキュベーション施設、アクセラレータープログラムの設置などの取り組みが加速するなど、オープンイノベーションを巡る情勢は急速に進化しました。 ‥ 2015年度の我が国の研究費総額はおよそ18.9兆円であり、負担者側、使用者側ともに筆頭は民間企業である。その内訳を図表 2-2に示す。このうち、企業が負担している研究費は13.6兆円に及ぶが、 企業から大学への研究費は923億円に留まっている。‥ 平成28年度の我が国の研究者数(実数)は91.8万人で、企業の54.7万人がもっとも多く、 大学、公的研究機関等が次いでいる。‥ 民間企業との共同研究・受託研究の実施機関数はおおむね増加傾向にあり、2016年度で共同研究の実施機関数が421、受託研究の実施機関数は437となっている。 ここで共同研究とは、大学等と民間企業等とが共同で研究開発を行い、かつ、大学等が要する経費を民間企業等が負担しているもの、「受託研究」とは、大学等が民間企業等からの委託により、主として大学等のみが研究開発を行い、そのための経費が民間企業等から支弁されているものを指す。

産学連携の始め方の実際(大学へアプローチしたい企業に向けたアドバイス)

  1. 「産学連携をスムーズに進めるコツ!」 信州大学 2018/11/26 産学連携推進協会 依頼したい内容は、アドバイス・相談、受託研究(分析)、共同研究(開発)のどれなのかを明らかにしておくこと 等
  2. 産学連携の導入手順とは?事業化させるためのポイントまで解説! 2022年9月8日 中小企業補助DX情報館
  3. 産学連携スタート時の留意点 中小企業活力向上アドバンス オンラインセミナー (YOUTUBE 5:15)

大学の研究成果は誰のもの?

  1. なぜなに産学官連携 TLO(技術移転機関)の制度/活動実績/歴史 国立大学法人化前にTLO法に基づく承認TLOおよび認定TLOと呼ばれる組織が全国で立ち上がり、その当時は大学が知的財産権を保有できなかったため、TLOが大学研究者が発明した技術の知的財産権利化やライセンス活動をしていましたが、国立大学法人化後は大学内での権利化ができるようになり、知的財産本部等も整備されたため、TLOも再編が相次ぎました。

起業の勧め

  1. スタートアップ躍進ビジョン ~10X10Xを目指して~  2022年3月15日 一般社団法人 日本経済団体連合会 「起業家との接点も増え、起業に人生を賭したリスクなどないことや、その魅力が広く一般に認識されている。起業やスタートアップ参加は、若者にとっても中高年にとっても、やればできるし面白そうな『普通の選択肢』となった。」

産学連携に関する公的な助成事業

公的な補助金に関する注意点

補助金や委託費は、事業完了後の精算手続きを経て、企業にお金が支払われます。したがって、それまでの間は、補助金や委託費が充当される予定の費用も、企業が立て替えておく必要があります。((出典:ここからはじめる! 産学官連携 53ページ 留意点)

技術シーズから事業化までのステップ

一般に、ある技術シーズを導入して製品を作るためには、製品に合わせて技術シーズを改良したり、関連して必要となる技術を開発したりする等、補完的な技術開発を実施する必要があります。(出典:ここからはじめる! 産学官連携13ページ 成功のポイント)

産学連携の落とし穴

  1. [産学連携のトリセツ]「産」と「学」を分けない。壁を壊し、地続きにする 2021.02.17 WED  CGWORLD.JP

TLOとは

TLOとは、Technology Licensing Organization(技術移転機関)の略称です。大学の研究者の研究成果を特許化し、それを企業へ技術移転する法人であり、産と学の「仲介役」の役割を果たす組織です。大学発の新規産業を生み出し、それにより得られた収益の一部を研究者に戻すことにより研究資金を生み出し、大学の研究の更なる活性化をもたらすという「知的創造サイクル」の原動力として産学連携の中核をなす組織です。(大学の技術移転(TLO) 経済産業省)

  1. 大学の研究成果の社会実装!「信州TLOが推進する産学連携について」 2020.3.17 地域価値WG(第3回) 株式会社信州TLO代表取締役社長 大澤 住夫
  2. TLO広域化をめぐる現状と方向性等について 令和4年3月3日 科学技術・学術政策局産業連携・地域振興課 文部科学省

産学連携コーディネーター

  1. 日本のアカデミアにおける研究推進・活用人材-競合から協働へと向かう産学官連携コーディネーターとURA- 2018年10月 政策研究大学院大学 高橋真木子 古澤陽子 枝村一磨 隅藏康一」
  2. 研究成果の社会実装に向けた戦略的取り組み 平成25年度~令和元年度 選定東京理科大学 URA人員数の推移 2015年度26人 2016年度28人 2017年度28人 2018年度26人 2019年度27人

産学連携に関する国(日本政府)の考え方

  1. 3.今後の産学官連携のあり方 新時代の産学官連携の構築に向けて(審議のまとめ) 技術・研究基盤部会 科学技術・学術審議会 政策・審議会 文部科学省
  2. 第4章 研究成果の社会展開の促進 令和元年版科学技術白書 文部科学省

産学連携の事例集

  1. 「組織」対「組織」の 本格的な産学連携 構築プロセス実例集 経済産業省 産業技術環境局 大学連携推進室 46ページPDF
  2. 「組織対組織」による産学連携の取組事例集 採用と大学改革への期待に関するアンケート【別冊】 20 22年1月18日 経団連 82社164事例 IHI  横浜国立大学との人工知能(AI)技術に関する共同研究講座の開設、愛媛トヨタ自動車  大学コンソ-シアムえひめインタ-ンシップ部会、小野薬品工業 京都大学大学院医学研究科創薬医学講座、小松製作所 国内7機関との産学連携推進包括協定、SUBARU 東京工業大学 実践AI・データサイエンス講義、帝人 帝人奨学会の運営、栃木銀行 とちぎん創業塾、トヨタ自動車 名古屋大学COI(文部科学省センター・オブ・イノベーション プログラム)、ニコン ニコンイメージングサイエンス寄付研究部門、日本ハム  産業動物臨床実習受け入れ、吉本興業ホールディングス 笑う東大、学ぶ吉本プロジェクト、アステラス製薬 京都大学とのアライアンス・ステーション開設、小野薬品工業 免疫炎症性難病創薬コンソーシアム、常陽銀行 茨城大学との共同研究プロジェクト「Joint結」 ビジネスプランコンテスト・めぶきビジネスアワード、日本アイ・ビー・エム  IBM東大ラボ、三井不動産  三井不動産東大ラボ 「経年優化する都市~after コロナを見据えたデジタル革命による 次代の価値創造~」、USEN-NEXT HOLDINGS  「帰宅を促す音楽」共同制作、岡谷鋼機株式会社 名古屋大学オープンイノベーション拠点(OICX)、ほか
  3. 【事例編】 ニュービジネスの創出・育成に向けた産学官連携と銀行界が果たすべき役割 本事例編は、全国銀行協会の正会員(126行:都市銀行・信託銀行等18行、地方銀行64行、第二地方銀行協会加盟行44行)に対して、2009年7月に実施したアンケートにおいて回答を得た、産学官連携に関する個別銀行の取組事例を、全国銀行協会金融調査部で取りまとめたものである。
  4. ― 研究成果の要約 ― 本研究は、産学連携による共同研究や大学特許のライセンスの必須要件である、大学シーズと企業ニーズのマッチングを効率的かつ効果的に行う手法を開発するための調査研究である。 本研究では、国内大学・TLO32機関、国内企業53社に対してアンケート調査を行い、200通の回答を得た(回収率40.5%)。また、国内10大学とドイツ5機関にヒアリング調査を行い、大学シーズと企業ニーズのマッチングにおける課題を整理し、その対応策について検討した。

産学連携の成功事例

産学連携に関する論説文

  1. 大学における産学官連携の取り組み 正橋直哉 まてりあ第58巻第8号(2019) Materia Japan 大学の実験室で「世界最高」性能を確認しても,企業はいたって冷静である.その理由は,大学の研究の多くが,①先行・競合技術の調査がない,②量産やスケールアップを考慮していない,③コスト試算がない,④マーケット調査を行っていない,⑤関連する法律・規則を調べていない,⑥実用環境を想定していない,の6つの「ない」に集約できる.
  2. 産学連携のすすめ―日本の大学が行うべき5つの課題 マサチューセッツ工科大学インダストリアルパフォーマンスセンター研究フェロー 畠中 祥 アルカディア学報No.163 日本私立大学協会 特許をとるだけではコストがかさむだけの話で、ライセンス契約にもちこんで初めて技術の実用化につながる。ライセンス契約で採算を取っていくこと自体簡単ではない
  3. さらなる産学連携の発展にむけて 諸岡健一 特許研究 No.49 2020/3
  4. 組織的な産学官連携を行う上での問題点とその背景要因:産学官の有識者による自己診断とそこから得られる示唆 科学技術・学術基盤調査研究室 研究員 村上 昭義 NISTEP STI Horizon 2018 Vol.4. No.4

その他

  1. 採用と大学教育の未来に関する産学協議会 2021 年度報告書 「産学協働による 自律的なキャリア形成の推進」 2022 年4月18日 採用と大学教育の未来に関する産学協議会
  2. 研究力強化のための大学・国研における研究システムの国際ベンチマーク ~米国、英国、ドイツおよび日本の生命科学・生物医学分野を例に 海外で活躍する日本人研究者に聞く~
  3. イノベーション創出に向けた研究開発法人の機能強化に関する提言 2014 年7月15日 一般社団法人 日本経済団体連合会

サーマルカメラの製品ラインアップ、価格など

FLIR

FLIR Lepton(センサモジュール)

SparkFun FLiR Lepton Camera Module(YOUTUBE)

FLIR X6550sc

FLIR A655sc-7 LWIR Science-Grade Camera 640 x 480 thermal image    image transfer over GigE Vision    Stream data directly to a PC running software for live viewing, recording, analysis Your Price: $28,330.00 tequipment.net

FLIRA325sc リアルタイムでの解析 が可能 な赤外線 320×420ピクセルの熱画像を生成する非冷却酸化パナジウム(Vox) のマイクロボロメーター検知器 GIGE VisionTM規格との互換性 https://www.flirmedia.com/MMC/THG/Brochures/RND_010/RND_010_JP.pdf

  1. FLIR A35(W)  PoE(パワー・オーバー・イーサネット) 1本のLANケーブルでデータ収集と電力供給が可能 精度定格 測定値の±5%または±5℃のどちらか大きい方 通常価格: 693,000 円(税込) 新古品アウトレット 販売価格: 519,750 (税込)
  2. FLIR -4 to 2,192°F (-20 to 1,200°C) Thermal Imaging Camera mscdirect.com 4″ Color LCD Touchscreen Display, SD Card Storage Capacity, 384 x 288 Resolution Web Price $12,500.00 ea.

FLIR社 x Matlab

リアルタイムで画像処理してその結果を測定に反映させたい場合には、逐次画像処理できるプログラミング環境が必要になります。Matlabなどのソフトウェアに、そのカメラを認識するドライバーが用意されていない場合には、カメラドライバーを自分で作れる人でもないかぎり、そのカメラの使用を諦めるしかありません。どんなカメラにせよ購入前には、どのプログラミング環境でそのカメラを認識できるかを知っておく必要があります。MATLABで動かせる(リアルタイムで画像取得できる)カメラを探すとなると、メーカーや製品ががかなり限られます。

  1. Thermal analysis with FLIR camera MathWorks
  2. FLIR Thermal Face Detection and Tracking in Matlab Teledyne FLIR YOUTUBE
  3. Opening FLIR Movies with Matlab Software YOUTUBE 向きが変わった場合の顔の認識
  4. FLIR Thermal Face Detection and Tracking in Matlab YOUTUBE
  5. Thermal Analysis with MATLAB and FLIR cameras YOUTUBE
  6. “Thermal Analysis with MATLAB and FLIR Cameras” demo files

FLIR社 x LABVIEW

  1. Nostril in RGB Imaginary by Using NI Vision LabVIEW Proceedings of Engineering and Technology Innovation, vol.4,2016, pp. 37-39 we used FLIR thermal cameraP384-20 that has resolution 384 x 288 pixels with 50 frames per second (fps) in color mode.
  2. ThermoVision LabView Digital Toolkit Ver.3.1.  (PDF) FLIR SYSTEMS ThermoVision A20, A40、ThermoVision 320M、SC500, SC2000, SC3000, SC1000
  3. Grabbing an image from a FLIR A615 using LabVIEW Markus Tarin
  1. FLIRフリアースカウトⅡ320 サーマル暗視スコープ (税込 386,100円) satosokuteiki.com
  2. サーマルカメラ satosokuteiki.com

FLUKE

  1. IR camera temperature data integrated with LabVIEW and MATLAB software Published: 08 June, 2017 Fluke has introduced a new software feature that integrates high-resolution thermal data from the company’s TiX580 and TiX560 infrared cameras with National Instruments’ LabVIEW and MathWorks’ MATLAB software

OPTRIS

  1. Software tutorial | LabVIEW integration 動画

PANASONIC社製サーマルセンサAMG8833

  1. みえちゃう?! 赤外線アレイセンサーAMG8833【電子工作始めますか?】 Signal Flag “Z” AMG8833 画素8x8
  2. AMG8833 ROBOKITS INDIA 8X8 GRID EYE INFRARED/IR ARRAY THERMAL CAMERA SENSOR 2D TEMPRATURE DETECTION 7METER I2C INTERFACE  The AMG8833 thermal imaging camera sensor is an 8×8 infrared thermal sensor array.It has a temperature measurement range of 0°C to 80°C (32°F to 176°F).When connected to your microcontroller (or Raspberry Pi), it will return a set of 64 separate infrared temperature readings via I2C.

INFRATEC

InfraTec GmbH Infrarotsensorik und Messtechnik(ドイツ)

  1. PIR uc 605 Category Industrial thermal cameras DirectIndustry
  2. VarioCAM® HDx head S
  3. VarioCAM® HDx head 600 GigE-Vision interface for camera control and data acquisition

日本アビオニクス

赤外線サーモグラフィカメラ InfReC TS600シリーズ ±2°Cまたは±2%の高精度で温度計測 160万円(日経テック 低価格な設置型の赤外線サーモグラフィーカメラ「InfRec TS600」シリーズを開発、2017年2月上旬に発売する。価格を従来製品の半分以下)

サンワサプライ

サーモグラフィ(赤外線・1024画素・乾電池式) CHE-TG32  JANコード 4969887888575 標準価格 ¥58,080(税抜き ¥52,800) 測定温度精度 ±2℃または±2% -20℃~300℃の幅広い温度測定が可能 microSDメモリに画像データを保存 赤外線解像度32×32(1,024)ピクセルの解像度

P.D.Cam

try-e.co.jp 発熱者検出用に特化。販売価格 P.D.Cam-Advanced:\150,000(税込/送料別) P.D.Cam-Pro:¥165,000円(税込/送料別) (※価格はAdvanced、Proともに付属品 + 専用アプリ「P.D.Cam Viewer」を含む)

レンズについて

What are IR Camera Lenses Made Of? | Teledyne FLIR What lens is used in a thermal camera? Infrared cameras, on the other hand, make images from heat, aka infrared or thermal radiation, instead of visible light. It’s for this reason that FLIR camera lenses are made of germanium or other materials that are transparent in the infrared spectrum.Apr 30, 2021

暗視野カメラとサーマルカメラとの違い

  1. Explained: Night Vision vs Thermal Imaging A good night vision unit, even weapon-mountable models, can be had for a few hundred dollars, but thermal imagers will set you back at least $2,000

画像解析による生体信号の抽出

心拍、呼吸、などを被験者の負担が少なく、行動の自由が制限されない方法で取得するアプローチとしてビデオカメラによる画像取得と画像解析があります。そんな照明光(波長)、どんなカメラ(波長特性)、どんな画像解析アルゴリズムによって、これらの生体信号を抽出可能なのか、論文その他の情報をまとめておきたいと思います。

心拍

  1. Contactless Heart Rate Monitoring Using A Standard RGB Camera Conferences >2020 IEEE International Works…  Soumyajyoti Maji et al. Video photo-plethysmography (VPG) methods have been used over the years to monitor the heart rate.
  2. Non-contact measurement of respiratory and heart rates using a CMOS camera-equipped infrared camera for prompt infection screening at airport quarantine stations. (2015). 東京都立大学 Publisher: IEEE Yosuke Nakayama; Guanghao Sun; Shigeto Abe; Takemi Matsui https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7158595 we used the CMOS-IR camera (Nippon Avionics, TVS-500EXLV, Japan)  TVS-500EXLV integrates a CMOS sensor camera and an IR camera, and provides the thermal and RGB image-fusion mode.    30 frames per sec with a 640 × 480  During the cardiac cycle, volumetric changes in the facial blood vessels modify the amount of ambient light absorption according to subsequent changes in the amount of reflected light. These changes indicate the timing of cardiovascular events. By shooting a video of the facial region with a CMOS-IR camera, the red, green, and blue color sensors pick up a mixture of the reflected plethysmographic signals, including other sources of fluctuations in light due to artifacts [13]. We adopted the green signal, which is the most suitable color for calculating the heart rate [16]. カラーカメラの緑色の成分で血流変化がわかる(?)
  3. K. Matsumura, P. Rolfe, J. Lee, and T. Yoshitaka, “iPhone 4s Photoplethysmography: Which Light Color Yields the MostAccurate Heart Rate and Normalized Pulse Volume Using the IPhysioMeter Application in the Presence of Motion Artifact?” PLoS ONE, vol. 9(3), pp. e91025, 2014.
  4. MEASURING THE PULSE RATE BY USING WEBCAM R.Archana, M.Lakshmi Raviteja Conference Paper · November 2013 ウェブカメラで心拍数(?)

Photoplethysmography (PPG) 光電容積脈波測定法 フォトプレチィスモグラフィ

  1. 手首からの光電式容積脈波記録信号に基づく脈拍数変動解析のための高信頼性の心拍検出アルゴリズム Foroohar Foroozan, Dr. Jiang Wu 共著 ANALOG DEVICES
  2. Recent advances in photoplethysmography IOP Publishing Speakers: Rich Fletcher, Massachusetts Institute of Technology Raquel Bailón Luesma, University of Zaragoza Ramakrishna Mukkamala, University of Pittsburgh Xiaoman Xing, Suzhou Institute of Biomedical Engineering and Technology YOUTUBE
  3. スマートフォン式光電容積脈波測定法 生体医工学54(3):120-128、2016 よくまとまったわかりやすい解説 PPGとは、脈拍に伴う動脈容積の変化を光学的に捉えるものである
  4. Remote photoplethysmography (A new core algorithm) 【YOUTUBE DEMO) ICA(2011)、CHROM(2013)、PBV(2014)、2SR(2016)の4つのアルゴリズムの比較デモ。2SR(2016)の優位性を示すもの。MATLABのコードも紹介していた。数行。顔の動き(横方向の回転)があっても信号検出がロバスト。論文:A Novel Algorithm for Remote Photoplethysmography: Spatial Subspace Rotation Publisher: IEEE Cite This PDF Wenjin Wang; Sander Stuijk; Gerard de Haan
  5. FibriCheck Beat-to-Beat Accuracy Compared With Wearable ECG in Broad Dynamic Range fibricheck.com Hertzman et al were the first to find a relationship between the intensity of backscattered light and blood volume in 1938. …  In 2010, Jonathan and Leahy et al presented a case study which concluded that HR could indeed be measured through PPG by using a smartphone. PPGとECGのピークのタイミングがわかりやすいく図示されている。
  6. A new principle of pulse detection based on terahertz wave plethysmography Yu Rong, Panagiotis C. Theofanopoulos, Georgios C. Trichopoulos & Daniel W. Bliss Scientific Reports volume 12, Article number: 6347 (2022) テラヘルツの光の利用
  7. Photoplethysmogram – Pulse Meter (YOUTUBE) 原理の説明 心拍が押し出したときに血流が増えて光を吸収する(透過光を検出する場合)、もしくは反射する光の量が変化する。暗室で指の向こうに光源をおくと、肉眼でもはっきり心拍が観察できる
  8. Webcam Pulse Monitor: Measure Heart Beats with Your Face! NickTech (YOUTUBE)スタンフォード大学電子工学科の学生 ウェブカメラで顔をうつして、心拍を検出するデモ。RGBのGだけ利用 アルゴリズムは MIT:Eulerian Video Magnification 参照。マッチングサイトで気があうかどうかを調べられるのではという応用可能性にも言及していた。(GしかつかわないのならRGBカメラの必要もない。波長特性がフラットなモノクロカメラならGのみを通すフィルターをつければよかろう。)
  9. Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion Jihyoung Lee, Kenta Matsumura, Ken-ichi Yamakoshi, Peter Rolfe, Shinobu Tanaka, Takehiro Yamakoshi PMID: 24110039 DOI: 10.1109/EMBC.2013.6609852 Annu Int Conf IEEE Eng Med Biol Soc . 2013;2013:1724-7. Reflection photoplethysmography (PPG) using 530 nm (green) wavelength light has the potential to be a superior method for monitoring heart rate (HR) during normal daily life due to its relative freedom from artifacts.  … the limit of agreement in Bland-Altman plots between the HR measured by ECG and PR measured by 530 nm light PPG (±0.61 bpm) was smaller than that achieved when using 645 and 470 nm light PPG (±3.20 bpm and ±2.23 bpm, respectively).  緑、赤、青で比べたかぎり緑が一番正確だったという結果。定量的な実験。
  10. Comparison of reflected green light and infrared photoplethysmography Annu Int Conf IEEE Eng Med Biol Soc . 2008;2008:2270-2. doi: 10.1109/IEMBS.2008.4649649.  Y Maeda 1, M Sekine, T Tamura, A Moriya, T Suzuki, K Kameyama Affiliations expand PMID: 19163152 DOI: 10.1109/IEMBS.2008.4649649 赤外線(880 nm)と可視光(緑色、525 nm)との比較で、緑色のほうが筋電図との相関が高かったという結果。
  11. Physiological Measurement Published: January 1991 Photoplethysmography Part 2 Influence of light source wavelength L. G. Lindberg & P. Å. Öberg Medical and Biological Engineering and Computing volume 29, pages48–54 (1991) When the microvascular blood perfusion in human skin is measured by photoplethysmography (PPG), infra-red light (800–960 nm) is normally used as the light source. 赤外線(できるだけ長い波長)をつかうのは、長波長ほど生体の奥まで光がとおるから、つまり、指を透過しやすいからか。だとすると反射光を利用する場合には、必ずしもこの必要がない(?)。
  12. フォトプレチィスモグラフィ 脈管学45(5)2005 May 25 脈波には圧脈波容積脈派がある。

Oxymetry

心拍の話とはズレますが、酸素の量を測定するパルスオキシメーターに関して。

  1. Pulse Oximetry Basic Principles and Interpretation Iowa Head and Neck Protocols
  2. パルスオキシメーターVS心電図 dental-diamond.jp
  3. NJL5501R搭載 パルスオキシメータ用・反射型センサ DIP化モジュールキット 秋月電子通商 発光波長(λp 660±3nm、940±10nm) ¥350(税込)

その他参考

  1. 表情解析ソフトウェア「フェイスリーダー」 ソフィアサイエンティフィック 基本7感情 喜び 怒り 悲しみ 驚き 恐怖 嫌悪 軽蔑 をリアルタイム解析 活性 退屈・興味・混乱 恥ずかしさ なども。 参考:YOUTUBE FaceReader Classifications Demo | Noldus Product Demo(限定公開)
  2. M5Stack用心拍センサユニット 秋月電子通商 ウェアラブルデバイスの要求要件に合わせて設計された完璧な血中酸素濃度、心拍数センサー 1個 ¥1,620(税込)

 

その他、論文

  1. Heart rate variability with photoplethysmography in 8 million individuals: a cross-sectional study Aravind Natarajan 1, Alexandros Pantelopoulos 1, Hulya Emir-Farinas 1, Pradeep Natarajan Lancet Digit Health . 2020 Dec;2(12):e650-e657. doi: 10.1016/S2589-7500(20)30246-6. Epub 2020 Nov 23.

ウェアラブルな装置を用いた生体信号モニター 心拍数、歩数、その他 

心拍、呼吸、などのバイタルサイン(生体信号)をどのように計測できるのでしょうか。侵襲性の少ない方法、被験者の負担が少ない方法、行動の自由が制限されない方法が望まれます。ウェアラブルな測定装置の開発が一つの大きな流れです。もうひとつのアプローチはビデオカメラによる画像取得と画像解析によるそれらの生体信号の抽出です。

ビデオ撮影・画像解析による心拍・生体信号の記録測定

  1. VitalCam: Multisensory Camera for Health Monitoring ETH Zurich
  2. Revolutionary camera-based patient monitoring technology to be extended to five essential vital signs 17 APRIL 2015 oxehealth.com the algorithms will monitor five vital signs: the patient’s breathing and heart rate will be tracked to detect any significant variations; temperature will be monitored, particularly to help identify signs of sepsis; blood oxygenation will be tracked to identify any major de-saturations; and blood pressure to identify any hypotensive episodes.
  3. Camera-based Patient Monitoring oxfordbrc.nihr.ac.uk https://oxfordbrc.nihr.ac.uk/videos/ 臨床の動画多い

心拍数

アップルウォッチで心拍数が計測できるそうです。他のメーカーもいろいろあります。

  1. Apple Watchで心拍数を確認する apple.com Apple Watchの「心拍数」App を開くと、現在の心拍数、安静時の心拍数、歩行中の平均心拍数を確認できます。 長期間の心拍数データを表示するには、iPhoneの「ヘルスケア」Appを開き、「ブラウズ」>「心臓」とタップしてから、エントリーをタップします。過去1時間、1日、1週間、1か月、または1年の心臓データを表示できます。 手首検出、触覚による通知、血中酸素ウェルネスの測定(Apple Watch Series 6、Apple Watch Series 7、およびApple Watch Series 8のみ)、および心拍数センサーなどの機能を動作させるには、Apple Watchの背面が皮膚に接触している必要があります。きつすぎたり緩すぎたりせず、皮膚を覆いすぎないようにApple Watchをほどよくフィットさせて装着すれば、快適に過ごせるだけでなく、センサーを正しく機能させることができます。
  2. Garmin Elevate光学式心拍計を搭載したデバイスを装着することで、24時間連続して心拍数を追跡できます。このデバイスは心拍数をリアルタイムで瞬時に感知して表示します。 呼吸数は、1日における1分間の平均呼吸数 (brpm) を測定し、光パルスレート技術を使用して吸入と呼気をそれぞれ追跡します。
  3. Garmin vívosmart 5 ¥ 19,621

心電図

アップルウォッチでは心拍数の計測だけでなく、心電図をとることもできるようです。腕時計を装着していないほうの手で、腕時計の一部(デジタルクラウンという呼称の、アップルウォッチの側面部位)を触ることにより、心臓を含む回路が形成されるので心拍(電位変化)が測定できるということなのでしょう。

  1. Apple Watchの「心電図」Appで心電図を記録する Apple Watchで「心電図」Appを開きます。 腕を机や膝の上に置きます。 Apple Watchを装着していない方の手の指をDigital Crownに当て、Apple Watchで心電図が記録されるのを待ちます。

歩数

  1. Androidスマホにおける「歩数カウント」精度向上への歩み 投稿日 : 2015/06/10 スマホが現在どのように傾いているかを「地磁気センサー」を使用して取得します。加速度センサーと地磁気センサーから得た値を行列式を用いて変換することで、地面に対する上下方向の加速度値のみを抽出します。この、上下方向の加速度値を用いるのが、歩数カウントの基本となります。

呼吸

  1. https://support.withings.com/ Sleep (U.S.) – Tracking my breathing disturbances フランス製のスマートウォッチ アナログ(時計の針)、電池の持ちの良さ、デザインなどで人気。
  2. Measurement of respiratory rate using wearable devices and applications to COVID-19 detection Aravind Natarajan, Hao-Wei Su, Conor Heneghan, Leanna Blunt, Corey O’Connor & Logan Niehaus npj Digital Medicine volume 4, Article number: 136 (2021) Fitbit’s privacy policy does not permit us to make the raw data or aggregate data available to third parties including researchers, outside of our web API Oauth 2.0 consent process.
  3. WearBreathing: Real World Respiratory Rate Monitoring Using Smartwatches Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 56. Publication date: June 2019.
  4. 「睡眠と呼吸」から自律神経の状態をチェックできるPolar「Ignite」レビュー 今雄飛2019年9月6日 POLARは世界で初めてワイヤレス式の心拍計を開発したブランド。 ‥ GPS付きスポーツウォッチに上乗せされたのが、「睡眠と呼吸」に関する機能。そのひとつである「Nightly Recharge(ナイトリーリチャージ)」は、睡眠時の心拍データから自律神経の状況を分析することで、身体とメンタルの回復状況を示してくれる機能だ。
  5. 呼吸のリズムを可視化するスマートデバイス「ZenTracker(仮称)」を開発 株式会社コト 2021年11月22日 10時30分 PRTIMES .ウェストに挟む小型デバイス 無意識での呼吸を捉えるため、ZenTrackerは日常生活を邪魔しないコンパクトなサイズ感と装着感を目指しました。デバイスの存在を気にすることなく、日常生活を楽しんでください。
  6. 運動時の呼吸リズム観察への新しい呼吸モニターの応用 愛知学院大学心身科学部紀要第11号 2015年  呼吸流量計(SRM)による呼吸数測定値と比較し検討した。‥ 肺容積の拡大縮小にともなう胸囲の変化と横隔膜および胸郭組織の形状変化は胸部表面と背部表面聞のキャパシタンス(電気容量)を変化させることになり,呼吸運動を両電極聞のキャパシタンス変化としてみることができる(図1)
  7. GARMIN 呼吸数について 呼吸数機能を利用するための条件 呼吸数を獲得するには以下の条件を満たす必要があります 胸部心拍計を装着する 対応デバイスを使用しアクティビティ計測をする スイムアクティビティには対応しておりません

サーマルビデオカメラによる呼吸リズムの検出

  1. Estimation of Respiratory Rate from Thermography Using Respiratory Likelihood Index Sensors 2021, 21(13), 4406; https://doi.org/10.3390/s21134406 Boson 320 thermal imaging camera (FLIR Systems, Inc.). It has a resolution of 320 × 256 pixels, a viewing angle of 34.1° (horizontal) × 27.3° (vertical) and frames per second of 8.6. T

関連記事

  1. サーマルカメラの製品ラインアップ、価格など
  2. 【2022年】活動量計のおすすめ17選 身に着けられる健康管理アイテム 更新日:2022.06.15 ビックカメラ

画像処理技術に基づいた呼吸のタイミングの検出および呼吸リズムのモニタリングに関する研究論文など

呼吸をモニターする方法はいろいろあります。睡眠時無呼吸症候群の場合は、チューブを鼻のところにおいて、空気圧を測定するようです。しかし、身体に器具を装着しないでも、ビデオカメラで画像データを取得して呼吸を検出することが考えられます。呼吸に伴う状態の上下動の変化を分析したり、呼吸の際の鼻のまわりの皮膚の温度変化を検出するといったことが考えられるでしょう。

論文The Use of Infrared Thermal Imaging to Determine Functional Nasal Adequacy: A Pilot Study(September 30, 2021 https://doi.org/10.1177/2473974X211045)
では、鼻の孔の部分の呼吸による温度変化を示した図がありました。 Fig.1(引用元へのリンク

方法:A thermal video imaging device was used to record the difference in temperature (ΔT) between inspired (I) and expired (E) air at each nostril. サプリメンタリ-ムービーにあった注釈によれば、温度差ΔT=5度Cだそうです。室温と体温の差がおよそ10度程度あるでしょうから、比較的検出しやすい、十分な温度幅があると言えるかもしれません。

使用カメラ:Seek thermalPRO (Santa Barbara, California) imaging device, in pinpoint-temperature reading video mode, was placed approximately 5 to 20 cm from the subject’s nostril, similar to a basal view rhinoplasty photograph. This device was previously tested in another biomedical application.13 Maximal inspiratory (I) and expiratory (E) temperatures were recorded for each nostril, and the difference between the 2 extremes was recorded as ΔT in several conditions (Figure 1Supplemental Video 1)

  1. Journal of Biomedical and Health Informatics (JBHI) Special Issues Camera-based Health Monitoring in Real-world Scenarios  Deadline for Submission: 31 December, 2022
  2. Continuous Monitoring of Vital Signs Using Cameras: A Systematic Review  Sensors (Basel). 2022 Jun; 22(11): 4097. Published online 2022 May 28. doi: 10.3390/s22114097 PMCID: PMC9185528 PMID: 35684717
  3. IR thermography-based monitoring of respiration phase without image segmentation Journal of Neuroscience Methods Volume 301, 1 May 2018, Pages 1-8 Novel algorithm obviates the need for defining regions of interest, image segmentation and tracking of the nostril.
  4. Thermal image processing for real-time non-contact respiration rate monitoring Abdulkadir H Alkali,Reza Saatchi,Heather Elphick,Derek Burke First published: 01 March 2017 https://doi.org/10.1049/iet-cds.2016.0143Citations: 24 Institution of Engineering and Technology. Facial tracking was required as head movements caused the face to appear in different locations in the recorded images over time. The algorithm detected the tip of the nose and then, a region just under it was selected.
  5. Breathing Analysis Using Thermal and Depth Imaging Camera Video Records. (2017). Sensors Volume 17 Issue 6 10.3390/s17061408
  6. Nose Detection and Breathing Monitoring in Thermal Images. International Journal of Advanced Science and Technology Vol.109 (2017), pp.67-76 http://dx.doi.org/10.14257/ijast.2017.109.07

サーモカメラを用いた呼吸の検出(動画)

  1. https://youtube.com/shorts/1RQFVNiLJt
  2. The Non contact Respiratory Monitoring System using Thermal Image Processing
  3. Monitoring Respiratory Rate Using Thermal Imaging
  4. https://www.youtube.com/watch?v=NrufyuN8JcU
  5. FLIR and Mask Breathing Thermal Imaging マスクをした状態での呼吸の検出
  6. Camera-based health monitoring Wenjin Wang, Gerard de Haan Cameras have been used to measure physiological information (e.g. heart rate, breathing rate) and contextual information (e.g. discomfort, delirium) from human face and body for health care.

Seek Thermal

このカメラは、アンドロイドのスマートフォンに接続して使うタイプのようです。

  1. Seek Thermal – Android Infrared Camera Review by Ganesh T S on May 1, 2015 8:30 AM EST The microbolometer in the Seek Thermal camera responds to long-wave infrared (i.e, wavelengths between 7.2 and 13 microns).

株式会社ヴュオールイメージング View Ohre Imaging

  1. サーマルヴューX-HRシリーズ 人体温度測定に最適化 データ出力 ビットマップ、CSV、ローデータ ギガビットイーサネット 全機種最小温度分解能(NETD)は0.05℃以下(@30℃)
  2. 例:上半身・静脈の熱画像1 サーマルヴューX(640×480画素)(YOUTUBE)

HikMicroサーモグラフィ―カメラ

  1. HIKMICRO B10 サーモグラフィー カメラ 256 x 192 画素の赤外線熱画像 2MP 可視光カメラ、熱画像キャプチャー頻度 25Hz  ¥45,760 アマゾン 192 x 144 のIR解像度熱感度<0.04°CHIKMICRO VOX検出器を搭載 (目、角膜の熱画像 サーマルヴューXHR32-RA0350 YOUTUBE)
  2. HikMicro E1L – Compact Thermal Imaging Camera Thermal Resolution: 160 × 120 
  3. HM-TP42-3AQF/W-Pocket 2 HIKMICRO https://securitydesign.bcart.jp/uploads/HIKVISION/HIKMICRO/HM-TP42-3AQF_W-Pocket2/data_HM-TP42-3AQF_W-Pocket2.pdf 精度2度C

FLIR

  1. FLIR A50/A70 画像転送専用カメラ 固定型赤外線サーモグラフィカメラ
  2. FLIR HADRON™ 640R 赤外線サーマルと可視光の高性能デュアルOEMカメラモジュール ]
  3. FLIR Tau® 2 OEMサーモグラフィカメラ
  4. FLIR Tau 2 336 60Hz – LWIR Infrared Camera Core (09 50mm F/1.2-6.5°) Visit the フリアー(Flir) Store ¥900,000 アマゾン
  5. 1460-1600nm Near-Infrared Camera  商品コード #56-567-RCD-05N ¥188,587 EDMUND OPTICS

大正製薬の抗肥満薬アライ(オルリスタット)が医師の処方箋なしで薬局で買える薬として承認

厚生労働省が大正製薬の抗肥満薬アライ(一般名:オルリスタット)を薬局で買える薬として承認することになり、テレビ番組で紹介されて、SNS上でもこのニュースが話題になっていました。オルリスタットは、ゼニカルという商品名で医療で使われてきたものだそうです。ジェネリック薬品の商品としてはオルリファストという名の製品もあるようです。

食べた油が吸収されずにそのまま排出されるというのが、この薬の効くメカニズムだそう。食べた油がそのまま、そのまま排出されるというところが、場合によってはかなりの難点になりそうです。

  1. 「抗肥満薬」オルリスタット、処方箋なしに薬局で購入可能に…ネット販売は不可 2022/11/28 20:59 読売新聞オンライン
  2. 「めざまし8」が薬局で買えるようになる『肥満改善薬』を特集 「副作用が完全にバラムツ」「覚悟いる」と反響 2022年12月1日 11時54分 中日スポーツ

肥満改善薬が市販される衝撃

オルリスタットとは

ゼニカルとは

オルリファストとは

オルリスタットの構造式

オルリスタット/ゼニカルの今・昔

オルリスタット購入の要件

オルリスタットのターゲット

ゼニカルの効果

ゼニカルとアライの違い

抗肥満薬オルリスタット

抗肥満薬オルリスタットの副作用

遠隔医療(オンライン診療)の現在

 

遠隔治療のメリットとデメリット

  1. オンライン診療のメリット・デメリットにはどんなものがある? 2021年11月2日 (更新:2022年9月7日) CLIUS クリニック開業マガジン

遠隔医療の実際例

  1. 遠隔診療を利用したがんケアの急増とその今後 2022年3月31日 自宅から車で2時間半かけてナッシュビルに行って診察を受ける代わりに、LaBonne一家はVICCの小児腫瘍医とビデオ通話をした。
  2. “売れない”と言われた遠隔医療で母子の命を救うアジア広域医療DX周産期医療パーソナルヘルスレコード メロディ・インターナショナル株式会社 チェンマイ大学の医師がiCTGを活用し、約1500ケースのデータを取得した。そのデータをもとに、50名ほどに妊産婦がより大きな医療施設での診断が勧められ、うち10名ほどには実際に異常が見つかり、特に5人はiCTGのおかげで命が助かった 願いはみんな私たちと一緒。妊婦さんは健康な赤ちゃんを産みたいし、医療従事者は目の前の患者さんを助けたいんです。

遠隔医療を実現するテクノロジー(診察)・技術開発

  1. フィンガービジョンと光学的触覚計測による眼科疾患遠隔診断治療装置の開発 中澤 徹 東北大学 教授 「分野1:遠隔医療を実現するための医療機器・システム開発」 令和4年度 「医療機器等における先進的研究開発・開発体制強靭化事業 (基盤技術開発プロジェクト)」の採択課題(AMED)
  2. 在宅慢性心不全患者の心不全再入院抑制に資する五感を生かした遠隔診療システムの開発 桝田 浩禎 大阪大学 特任助教 「分野1:遠隔医療を実現するための医療機器・システム開発」 令和4年度 「医療機器等における先進的研究開発・開発体制強靭化事業 (基盤技術開発プロジェクト)」の採択課題 (AMED)
  3. 令和4年度 「医療機器等における先進的研究開発・開発体制強靭化事業 (基盤技術開発プロジェクト)」 分野1:遠隔医療を実現するための医療機器・システム開発 患者の医療機関へのアクセス改善や医師間の診断・治療スキルの共有等を目的とした遠隔医療を促進するため、在宅患者向けデバイスや五感を用いた治療・診断補助用デバイス、遠隔手術ロボット等を開発する。(AMED)

「遠隔診療の現在と高度化に向けて求められるデジタルツールの機能2021年1月14日」という記事で、実現している機能、実現が期待される機能についての話がありました。

  1. テレビ会話システム
  2. ダーモスコピー 患部を拡大
  3. 皮膚の温度や乾燥具合 サーモグラフィー
  4. 肝臓や脾臓(ひぞう)の腫れや大きさ 超音波検査機
  5. デジタル聴診器 心音や呼吸音
  6. 検査機器をEMR(Electronic Medical Record)にオンライン接続
  7. デジタル聴診器 数万円
  8. 自宅、避難場所や公的場所、調剤薬局に検査機器を設置し診察
  9. AIを使って顔の映像から脈拍や血圧、体温を計測
  10. 歩行映像から神経疾患や四肢の痛み
  11. 音声から呼吸数
  12. 自動問診システムもAI
  13. スマートフォンなど手近なツールでバイタルチェック「mobile health」
  14. 毎日のモニタリングデータはオンライン診療 血圧、体重、体温
  15. 加速度センサー 運動量
  16. 位置情報 生活の動き
  17. 生活の動き 精神疾患 うつ病
  18. マイクや振動 睡眠状態 睡眠データ
  19. パルスオキシメータ SpO2測定、
  20. 電極の付いた下着で心電図や筋電図
  21. Multisensor Monitoring(マルチセンサー・モニタリング)
  22. 運動をしていないのに体温や脈拍が上昇  適時な介入 timely intervention(タイムリー・インターベンション)

遠隔診療の現在と高度化に向けて求められるデジタルツールの機能 2021年1月14日 クリニック開業マガジン

遠隔医療ビジネス

  1. 国で遠隔医療などのデジタルヘルス市場が成長  2022年11月29日 JETRO 遠隔医療市場は896億ドル規模 COVID-19(新型コロナウイルス)はイノベーションへの変化と適応を加速させた。10年かかると言われていた遠隔医療の実装がわずか3カ月で達成された」
  2. 遠隔医療は世界で拡大、がっかり足踏み日本市場 日経ヴェリタスセレクト 2022年4月11日 4:00  [有料会員限定] 日本は医療機関のデジタル化への消極姿勢や診療報酬の低さなどから普及のペースは世界に比べ周回遅れ
  3. 遠隔医療フェア 2020年には135億円だった遠隔医療市場が急拡大し、2025年には約3倍の400億円を超えると言われています

2022年10月開催 第5回 医療と介護の総合展 東京 -メディカルジャパン- 会場風景

参考

  1. 医師の偏在と僻地医療の課題にVirtual Careで立ち向かう 2022.09.12 BY SALESFORCE

遠隔医療ビジネスの動き

  1. 2021年5月 大手小売業ウォルマートが遠隔診療大手ミーMD(MeMD)を買収し。店舗併設の簡易診療所「ウォルマート・ヘルス」の拡大

遠隔医療と医師法との関係

  1. 遠隔医療の現在と在宅医療での立ち位置 2020年2月28日 メドアグリケアグループ 専門医が総合医の診断をサポートDoctor to Doctor:D to D、へき地の患者さんを診察するDoctor to Patient:D to P 医師法20条「医師は、自ら診察しないで治療をし、若しくは診断書若しくは処方箋を交付し、自ら出産に立ち会わないで出生証明書若しくは死産証書を交付し、又は自ら検案をしないで検案書を交付してはならない。ただし、診療中の患者が受診後24時間以内に死亡した場合に交付する死亡診断書については、この限りではない。」 診察とは従来、問診・視診・触診・聴診など様々な方法で行われること 遠隔医療は診察に該当するという解釈 遠隔医療は医師法で規定されている「無診察医療禁止」をクリアしているという解釈になりました

医師対医師D to D の遠隔医療

  1. 遠隔医療モデル参考書 -医師対医師(DtoD)の遠隔医療版 2022年4⽉28⽇ 総 務 省(PDF136ページ)

”炎症性腸疾患”を知る〜どこにいても同じ治療を!遠隔医療の今 UHB北海道文化放送

遠隔医療の経緯

  1. 遠隔診療の今とこれから 2018/10/20 重症化してから病院に来院 患者さんの日常生活 薬をきちんと飲んでない患者
  2. 2016 年4 月医政局「対面診療なしは医師法に抵触する」
  3. 2015 年8月 厚生労働省医政局長「離島や僻地に限らない」「特定疾患に限らない」「対面診療と適切に組み合わせればよい」
  4. 1997年 厚生省健康政策局長 遠隔診療通知

国家政策・議論・研究

  1. 遠隔医療、「基本方針」策定に向け議論始まる 2022/08/22 中西 亜美=日経メディカル 厚生労働省は2022年8月17日に社会保障審議会医療部会を開催し、遠隔医療のさらなる活用に向けて新たに定める「基本方針」について議論した。
  2. 2022年3月28日 第87回社会保障審議会医療部会  オンラインによる開催とし、傍聴は報道関係者のみ デジタル田園都市国家構想実現会議 遠隔医療の活用促進に向けて、ICT機器の導入支援
  3. 遠隔医療技術活用に関する諸外国と我が国の実態の比較調査研究(H22-医療-指定-043)平成22-23年度 総合研究報告書主任研究者 酒巻 哲夫平成24(2012)年 3月 厚生労働科学研究費補助金地域医療基盤開発推進研究事業

参考

  1. 日本遠隔医療学会

解糖系、TCA回路、電子伝達系で産生されるATPの総数は38分子?36?34?32?31?30?28?

生化学の教科書をあれこれ見ていると、解糖系、TCA回路、電子伝達系で産生されるATPの総数がまちまちです。最大38分子、36分子、34分子、32分子、31分子、30分子、28分子といった記述を見たことがあるような気がします。

  1. グルコース1モルから好気的解糖系・クエン酸回路で38モルのATPが産生。shinshu-u.ac.jp
  2. グルコース1モルから38モルのATPを生成する(実際には30モル程度になる)kyoto-u.ac.jp
  3. 好気呼吸でのATPの収支は、グルコース1分子あたり解糖系で2分子のATP、クエン酸回路で2分子ATP、電子伝達系で最大34分子ATPであり、合計で最大38分子のATPになる。wikibooks.org

 

レーヴン/ジョンソン『生物学』にわかりやすい説明がありました(176ページ)。

  1. グルコース1分子あたり、解糖系でまず正味2分子のATPが産生されます。
  2. また解糖系でNADHが2分子産生されます。NADH1分子あたり、ATP3分子が産生される換算だそうなので、ここでATP6分子になるはずのところですが、実際には、細胞質に存在するNADHをミトコンドリアの内部へ輸送する際に、NADH1分子あたりATP1分子を消費するため、このNADH2分子から産生される正味のATPは2x3-2=分子なります。
  3. ピルビン酸が脱炭酸反応で酸化されてアセチルCoAがつくられるときに2つのNADHが産生しますので、2x3=6 で、ATP6分子に相当します。
  4. TCA回路では(グルコース1分子あたり)GTPが2分子できてこれがATPに変わるので、ATP2分子が産生。
  5. TCA回路ではNADHは(グルコース1分子あたり)6分子産生するので、6x3=18で、ATP18産生。
  6. TCA回路ではFADH2が(グルコース1分子あたり)2分子でき、FADH2の1分子につきATPが2分子産生される換算なので、2x2=4で4分子のATPが産生されます。

これらを合計すると36分子ということになります。最大38と言う言い方がなされるのは、細胞質のNADHをミトコンドリアに輸送するときに消費されるNADHを勘定に入れていないということなのでしょうか。この教科書の説明によれば、実際にはプロトン勾配のプロトンが必ずATP産生に使われるとは限らず、一部は単純に漏れ出てしまって何にもつかわれなかったり、あるいは、他の仕事に使われることもあるため、換算式としては、NADH1分子からATP2.5個FADH21分子からATP1.5個で計算して、

  1. 解糖系ATP 2 ATP
  2. 解糖系NADH 2×2.5ATP – 2ATP(輸送料)=
  3. ピルビン酸の脱炭酸反応 NADH 2個x2.5 ATP =5
  4. TCA回路 GTP 2x1 ATP =2
  5. TCA回路 NADH 6個x2.5 ATP  = 15
  6. FADH2 2個x1.5 ATP =3

この計算だと、30個のATPができるということになります。

ATPの個数に関する参考資料

  1. 呼吸で生じるATPの数とエネルギー変換の効率 早稲田大学 園池弘毅

エネルギー変換効率

看護師のための生理学の解説書『図解ワンポイント生理学』より。 糖質や脂質がもつ結合エネルギーの約70%がATPに変換され、約30%が熱になる。ATP1モルの加水分解で得られるエネルギーを-7.3kcal/molとして計算している文献もあるが、その場合は、糖質および脂質がもつ結合エネルギーのATPの化学エネルギーへの変換効率(図1の70%)を低く見積もることになる。(熱産生|体温とその調節 看護roo!)

水1分子と反応して、図2の右上のようにADPとPi(無機リン酸)に分解(加水分解)するときにエネルギーを放出します。これが、ATPのエネルギーとよんでいるものの正体です。このエネルギーの値は、ATPやADPの濃度にもよりますが、-10 kcal/molぐらいです。‥ イオンの価数が-4のATPやピロリン酸を例にとって考えましょう。3つのリン酸基に-4の負電荷が存在する電子状態は電子間のクーロン反発により極めて不安定です。これが、-1価のPiと-3価のPPiに分解すると、この反発が軽減されて大きく安定化します。しかし、この安定化の自由エネルギー∆Geleは、-10 kcal/molどころではなく、ピロリン酸でおよそ -300 kcal/mol, ATPで -170 kcal/molほどもあります。-10 kcal/molという程良い大きさになる為には、加水分解に伴って不安定化する要因が他にある筈です。‥ 水和に起因する自由エネルギーの不安定化∆Gsolが先の∆Geleの寄与と絶妙に相殺することにより、加水分解自由エネルギー∆Gが -10 kcal/molとなります。しかも、非常に面白いことに、ATPやピロリン酸の総電荷を様々に変えても、放出される自由エネルギーは-10 kcal/molで一定に保たれることが明らかになりました。(生命エネルギーの通貨ATP 〜ATPのエネルギー放出の分子メカニズム〜 東北大学理学研究科)

エネルギー代謝の基本原理:炭水化物はどのようにエネルギーを蓄えていて、それを解糖系、TCA回路、電子伝達系がどのように取り出しているのか?

エネルギー代謝を一言で説明するなら、グルコースC6H12O6を二酸化炭素と水に分解する過程でエネルギーを取り出しているということになろうかと思います。しかし、グルコースのどこにそんなエネルギーが蓄えられていたのでしょうか。また、電子伝達系で電子がさまざまな物質を移動していくことでなぜ、エネルギーが取り出せるのでしょうか。自然が作り出した巧妙なエネルギー代謝の仕組みに驚く一方で、なんとなく腑に落ちないモヤモヤが残ります。しっくりこないということは、まだ理解が足りていないということでしょう。

生化学の教科書を読んでも、エネルギーがどうやって蓄えられているのかの説明があまり直接的ではないように感じます。明確に説明していると感じられるウェブ解説記事や教科書をいくつか紹介しておきます。

レーヴン/ジョンソン生物学

レーヴン/ジョンソン生物学』(上巻)原書第7版 培風館

レーヴン(Raven)/ジョンソン『生物学』では、重力による位置エネルギーの紹介と説明をまず最初にしていて、概念を導入します。マクロな話として運動エネルギーと位置エネルギーを説明しています。そして、本質的な部分で重力による位置エネルギーも電場による位置エネルギーも同じなので、電子のエネルギーに関しては位置エネルギーという概念で説明をしていました。エネルギー代謝を理解するうえで、このRavenの教科書の説明が一番すんなりと頭に入ってきました。重力による物体の位置エネルギーはイメージしやすいですが、電子の位置エネルギーも結局同じことで、電子の位置エネルギーの差が、取り出されているというわけです。

光合成では、光から得たエネルギーを利用し、小さな分子(水と二酸化炭素)をより複雑な分子(糖類)に化合させていく。つまり、得られたエネルギーは位置エネルギーとして糖分子の原子間結合に蓄えられるのである。(144ページ)

化学反応の過程では、化学結合に蓄えられたエネルギーが新しい結合に移動する。実際には、電子がある原子や分子からほかの原子や分子に渡される。(145ページ)

原子や分子が電子を失うことを酸化されるといい、この過程を酸化とよぶ。このよび方は、生物において酸素原子がもっとも一般的な電子の受容体となっていることを反映している。(145ぺージ)

北大オープンコースウェア(OCW)

北大のウェブ教科書でも同様の解説がありました。

電子は原子核の周りを回っています。そのため、運動エネルギーと引きつけられる力による位置エネルギーがあります。分子では、この電子の運動の位置が変わり、それに伴って位置も変わるため位置エネルギーが変化します。このような力は、電子の電荷と関係していますので、原子ごとに異なります。このため、分子をバラバラにして原子の状態にするのに必要なエネルギーは分子ごとに異なることになります。したがって、分子同士の結合の仕方を変えたときに、エネルギーの低い状態に移ろうとします。これはちょうど、
坂を転がるボールと同じようなものです。(第12章 炭素の化学と化学反応 ocw.hokudai.ac.jp)

名城大講義資料

この説明も非常にわかりやすいと思いました。

それぞれの原子軌道について、そこに電子が入った時の「エネルギー」の値が決まっている。普通はこれを略して「原子軌道のエネルギー」と呼ぶ。電子のエネルギーとは、電子が持つ運動エネルギーと位置エネルギーを足したものである。‥ エネルギーの高い電子は、そのエネルギーを他の電子に渡して、より安定な状態に移ろうとする。原子や分子のエネルギーも、その大部分は電子のエネルギーである。従って、原子や分子が化学反応を起こそうとする原動力は、それらを構成している電子がより安定な状態(つまり「エネルギーの低い状態」)に変化しようとすることである。(有機化学基礎 講義資料 第2章「電子構造と共有結合 (2)」 meijo-u.ac.jp/~tnagata/)

 

日本物理学会編『生体とエネルギーの物理』第5章「生体エネルギー変換の戦略」(垣谷俊昭 著)

この本によれば、グルコース中のC-H結合やC-C結合に存在する電子のエネルギー準位は、酸化されてCO2になったときのC-O結合やH2OになったときのH-O結合に比べて、高い状態にあります。酸素は電気陰性度が大きい(=電子のエネルギー準位が低い)ので、CやHの電子にしてみれば、酸素と結合したほうがエネルギーが低い状態になれるというわけです。

この本には酸化還元電位の解説もあり、電子を引き抜くのに必要な仕事という目安として考えればいいということです。酸素は電気陰性度が大きい(=エネルギー準位が低い)ので、電子を引き抜くには大きな仕事量が必要になります(すなわち、酸化還元電位が大きい)。酸化還元電位が大きい物質ほど、電子を受け入れやすいという関係になります。

「電気陰性度」や「酸化還元電位」などいろいろな概念が登場しますが、これらは便利だから使っているだけで、概念としては、「電子のエネルギー準位」という一つのものしかなく、いろいろ言い換えているだけのように思います。

 

生物物理43(3)150-153ページ(2003年) 談話室  グルコースのエネルギーとは?

と言う記事にも、エネルギーがどこに蓄えられているのか(=化学結合)に関する考察・解説があります。

グルコースがエネルギー物質であるというとき, それはグルコースの酸化反応 1/6 C6H12O6 + O2 → CO2 + H2O における∆rH˚<0をさしている(∆rH˚は反応によるエンタルピー変化の値). もとよりエネルギーは相対的な値であり, グルコースのエネルギーの絶対値を云々することはできないから, 酸化反応によっていかほどまでエネルギー水準が降下するか, これが意味のある設問である. (生物物理43(3)150-153ページ(2003年) 談話室  グルコースのエネルギーとは?

上記の指摘は当たり前なのですが、グルコースが蓄えているエネルギーという言い方をしてしまうと、グルコースに関して何か絶対的な数値を思い浮かべてしまうため、初めて学ぶ人に誤解させてしまいがちな物言いだと思います。そのことに注意して読めば、下の教科書の解説もわかりやすい(というか、他ではあまりあからさまに書いていない言葉遣いで書かれている)。

何故電子を失うことが酸化なのか、それは酸素の電気陰性度が大きい(異原子間の共有結合において、酸素は電子を自分のほうに引き付ける力が強い)からというわけです。

酸化還元反応は生命におけるエネルギーの流れにおいて重要な役割をになっている。というのは、原子から原子へ受け渡される電子自体がエネルギーを運ぶからである。(145ぺージ)

電子がある原子から飛び出し(酸化)ほかの原子に移動する(還元)と、電子に与えられたエネルギーも一緒に移動し、その電子は異動先の原子でエネルギーレベルの高い電子軌道に入ることになる。与えられたエネルギーは化学的な位置エネルギーとして蓄えられ、その電子が本来のエネルギーレベルに戻るときに原子からエネルギーが放出されるのである。‥ 還元型の分子は酸化型の分子に比べて多くのエネルギーを持っていることになる。(145ページ)

どんな教科書でも結局は同じことを説明しているはずなのですが、ちょっとした言葉遣いの違いによって、理解のしやすさがだいぶ変わってきます。もちろん、学ぶ側の予備知識の量の違いも大きく影響します。

電子のエネルギーと化学反応
電子は「低いエネルギーの状態」になろうとする
(水が「低い方に流れる」のと同じ)
(水:重力のエネルギー、電子:電気的エネルギー)
・「低いエネルギー」を目指して電子の状態が変わる
→ 原子間の結合が変わる
→ 化学反応が起きる

(https://www2.meijo-u.ac.jp/~tnagata/education/ochemb/2019/ochemb_02_slides.pdf)

上の説明は、とても分かりやすいです。当たり前すぎてなかなか教科書に書かれていないことが述べられていると思いました。

もう一つの説明

今までは(上の説明では)、炭水化物の中の炭素‐炭素間、あるいは炭素ー水素間で共有されている電子対のエネルギー準位について考えてきましたが、ネットをいろいろみていたら、酸素分子のもつ電子のエネルギーが最大であり従来の考え方は間違っているという議論がありました。

  1. Oxygen Is the High-Energy Molecule Powering Complex Multicellular Life: Fundamental Corrections to Traditional Bioenergetics Klaus Schmidt-Rohr* Cite this: ACS Omega 2020, 5, 5, 2221–2233 Publication Date:January 28, 2020 https://doi.org/10.1021/acsomega.9b03352

従来のエネルギー代謝の考え方に対する修正という過激な論文タイトルです。要旨も過激でした。

  • crucial role of the highest-energy molecule involved, O2
  • The chemical energy utilized by most complex multicellular organisms is not predominantly stored in glucose or fat, but rather in O2 with its relatively weak (i.e., high-energy) double bond.
  • Accordingly, reactions of O2 with organic molecules are highly exergonic, while other reactions of glucose, fat, NAD(P)H, or ubiquinol (QH2) are not, as demonstrated in anaerobic respiration with its meager energy output.
  • The notion that “reduced molecules” such as alkanes or fatty acids are energy-rich is shown to be incorrect
  • Glucose contains a moderate amount of chemical energy per bond (<20% compared to O2)
  • the “terminal” aerobic respiration reaction with O2 does a large free energy change occur due to the release of oxygen’s stored chemical energy
  • The actual reaction of O2 in complex IV of the inner mitochondrial membrane does not even involve any organic fuel molecule and yet releases >1 MJ when 6 mol of O2 reacts
  • The traditional presentation that relegated O2 to the role of a low-energy terminal acceptor for depleted electrons has not explained these salient observations and must be abandoned.
  • Its central notion that electrons release energy because they move from a high-energy donor to a low-energy acceptor is demonstrably false

https://pubs.acs.org/doi/10.1021/acsomega.9b03352

ちょっと意表を突かれた気分です。2020年の論文ですが、現在どのように評価されているのでしょうか。

  1. This article is cited by 52 publications.

炭水化物が燃焼して(=酸素分子の存在下で酸化されて)水と二酸化炭素が生じることによりエネルギーが取り出されるわけですが、その取り出されるエネルギーはもともと何だったかといえば、貢献度でいうと炭水化物が蓄えていたものよりも酸素が蓄えていたもののほうがはるかに大きいというのが著者の主張のようです。

  • O2という最も高エネルギーな分子の重要な役割
  • 化学エネルギーは、主にブドウ糖や脂肪にではなく、比較的弱い(つまり高エネルギーな)二重結合を持つO2に蓄えられている
  • アルカンや脂肪酸などの「還元された分子」がエネルギー豊富であるとする考え方は正しくない
  • O2を用いた「末端」の好気呼吸反応では、酸素の蓄えられた化学エネルギーの放出により大きな自由エネルギー変化が生じます
  • ミトコンドリア内膜の複合体IVでのO2の実際の反応には、有機燃料分子が関与しておらず、それでも6 molのO2が反応すると1 MJ以上が放出されます
  • O2が電子不足の末端受容体としての低エネルギーの役割に限定された従来の説明は、これらの観察を説明しておらず、放出されたエネルギーは高エネルギー供与体から低エネルギー受容体への電子の移動によるものとする中心的な概念は明らかに誤っています
  • 末端」の好気呼吸における低い「末端」還元ポテンシャルは、重要な反応物であるO2の非常に高いエネルギーに帰因できます。これは、O2のない対応する半反応との比較で確認されています。
  • 電子は主に酸素ではなく水素によって受け入れられます
  • 重要であるのは、グルコース、NAD(P)H、またはATPではなく、O2である。

(https://pubs.acs.org/doi/10.1021/acsomega.9b03352 英語要旨の一部をChatGPT-3.5で日本語に翻訳)

論文中では、下のthat以下の解釈は間違いだと断定しています。それこそ自分のこれまでの理解だったのですが。。。

If students combine these concepts, they may reasonably (but incorrectly) conclude that the energy of combustion mostly derives from the bond energies of organic “fuel” molecules and that the energy differences are due to different electron affinities; for instance, the final step of aerobic respiration with transfer of electrons to oxygen is interpreted as the low-energy endpoint of the sequence of reactions.

電子が流れるとなぜ仕事ができるのか

生化学の教科書を読むと、電子が移動していくということが書かれていますが、それがなぜエネルギーを取り出す(仕事をする)ことになるのでしょうか。電子が移動する際に、位置エネルギーの高いところから低い所へ移動するので、それにより失われたエネルギーは何か別の形になっているはずです(エネルギーは形態がかわるだけで、量的には不変なので)。電子伝達系では、プロトン勾配に逆らってプロトンを輸送したりする仕事がなされるわけです。つまりプロトン勾配によってエネルギーが蓄えられるようになったのですね。

  1. 電力と電力量 高校物理をあきらめる前に(yukimura-physics.com)

生きることの意味

人間は生きている限り、栄養素からエネルギーを取り出し続けています。どうやってそうしているのかといえば、有機物の炭素―炭素間、あるいは炭素ー水素間の電子(これらの位置エネルギーは比較的高い)が、組み替えられて二酸化炭素や水といった、炭素ー酸素間、あるいは、水素ー酸素間の電子(これらの位置エネルギーは低い)になったときの、その位置エネルギーの差を別のエネルギーの形(ATPの高エネルギーリン酸結合)にしているわけです。つまり、電子が落ち着くべき場所(=一番位置エネルギーが低い場所)に落ち着くことが、生きているということだと言えます。それを端的に表現したのが、ノーベル賞を受賞しているハンガリーの生理学者の言葉です。

「人生とは、電子が自分の居場所を探しているだけのことだ。」

Life is nothing but an electron looking for a place to rest. Hungarian Nobel prize winner, Albert Szent-Györgyi

https://blogs.scientificamerican.com/thoughtomics/a-spoonful-of-molybdenum-some-ulysses-and-the-origin-of-life/

https://asm.org/Articles/2019/November/Microbial-Extracellular-Electron-Transfer-is-a-Far

https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55.))/reference/referencespapers.aspx?referenceid=2744912

生化学を学んでエネルギー代謝の原理を知ると、セント=ジェルジ・アルベルトのこの言葉が深く心に染み入ります。

参考サイト

  1. 酸化還元反応式 だいたいわかる高校化学(基礎)
  2. 呼吸鎖の各酸化還元電位 スライドプレーヤー 酸化還元対NAD+/NADH + H+ の標準酸化還元電位E0’= -0.32 V, 酸化還元対1/2 O2 / H2O の標準酸化還元電位E0’=0.82 V など