投稿者「PhD」のアーカイブ

大腸癌・直腸がんの手術について

下の動画が非常にわかりやすいと思いました。

専門医が教える直腸がん手術~イラストで分かりやすく解説~【国立がん研究センター中央病院】国立がん研究センター公式

上の動画のキーワード:大腸外科、直腸がん、腹膜、消化菅、胃、肝臓、脾臓、小腸、大腸、盲腸、上行結腸(じょうこうけっちょう)、横行結腸(おうこうけっちょう)、下向結腸(かこうけっちょう)、S状結腸、直腸、直腸S状部、上部直腸、下部直腸、肛門、肛門管(こうもんかん)、直腸がん、血便、便柱狭小化(べんちゅうきょうしょうか 便が細くなること)、血管、リンパ節、転移、肛門温存、腸管切離ライン、口側、肛門側、内肛門括約筋(ないこうもんかつやくきん)、外肛門括約筋(がいこうもんかつやくきん)、括約筋間直腸切除術(ISR)、排便機能、直腸切断術(肛門を含めて直腸を切断するため、永久人工肛門になる)、切除後の再建吻合部、縫合不全、吻合、人工肛門、一時的人工肛門、永久人工肛門、根治

 

直腸間膜全切除total mesorectal excisionTME

  1. 腹腔鏡下括約筋間直腸切除術(ISR)に必要な局所解剖 (手術 第74巻第13号 2020年12月号)肛門管近傍の腫瘍に対する括約筋間直腸切除術intersphincteric resection;ISR)は,1994 年のSchiessel らによる報告以降,腹会陰式直腸切断術(abdominoperineal resection;APR)に代わる肛門温存手術として広く普及してきた。内視鏡外科手術の拡大視効果によって,狭い骨盤内でも精細な解剖認識が可能になり,ISRの根治性向上と機能温存が治療成績向上につながっている2)。さらに近年では,ISRの新しいアプローチとして経肛門的に直腸間膜全切除total mesorectal excisionTME) を 行うtaTME(transanal TMEや,ロボット支援手術が普及しつつある。
  2. Total Mesorectal Excision  Society of American Gastroint 2011/06/24 PG Colon Course – R. Larry Whelan(YOUTUBE)
  3. Laparoscopic TME Society of American Gastrointe Laparoscopic TME Society of American Gastrointe(YOUTUBE)

 

その他

  1. 大腸がんの手術について腹腔鏡(ふくくうきょう)手術について (国立がん研究センター 東病院)イレウス:術後に腸管が麻痺することで腸がむくんでしまい、食事がとれなかったり嘔吐してしまう状況です。以前は腸閉塞(ちょうへいそく)と呼んでいましたが、腸管の癒着による腸閉塞と区別するため、最近では「イレウス」という言葉を使うことが多くなっています。

運動時のエネルギー代謝の変化 ATP,クレアチンリン酸、グリコーゲン、酸化的リン酸化、脂肪酸

庭で木を切っていたら、半分もきらないうちに筋肉が披露して、腕が動かなくなりました。エネルギーの枯渇です。若いときに比べたら、持続的に運動できる時間が本当に短くなったと思います。バス停まで走るときも、数十メートルも走ると足が止まってしまいます。20代後半にサッカーをやっていたときは、ボールを追いかけて長い距離を走ったら突然体が動かなくなってバランスを失い倒れたことがあります。小学校の頃にサッカーをやっていたときは、こういうエネルギーの枯渇を経験したことはありませんでした。サケが産卵で河を上ってきて、産卵を終えた後、ばたばたと死んでいくのも不思議でした。さっきまで普通に生きていたサケがなぜ、数分後にはエネルギーが枯渇して死んでしまっているのでしょうか。若いときは、エネルギーが枯渇するということがあまり実感できませんでしたが、歳をとると、突然エネルギーが切れて、体や頭が全く動かなくなるということを普通に経験するようになります。そうなって初めて、エネルギー代謝のありがたみを感じるのです。

エネルギー代謝って大事だなと思う今日この頃です。運動時のエネルギー代謝の変化としては、ATPの枯渇が数秒でおき、ATPを再生させる系であるクレアチンリン酸の枯渇が数十秒で起き(激しい運動時の話)、グリコーゲンが分解されてグルコースを供給しますが、それも数十分で枯渇し、酸化的リン酸化、脂肪酸などが大事になります。また、血中のBCAA(分岐鎖アミノ酸)を筋肉の細胞が取り込んでエネルギー源として使うほか、それも枯渇すると筋肉は筋肉のタンパク質を分解してBCAAを産生しそれをエネルギー源にします。

  1. BCAAとは?大塚製薬
  2. 必須アミノ酸BCAAとは BCAAとは、筋肉のエネルギー源 大塚製薬 BCAAとは、運動時の筋肉でエネルギー源となる必須アミノ酸である、バリン、ロイシン、イソロイシンの総称です。
  3. 筋肉量を増やすために必要な栄養素「分岐鎖アミノ酸(BCAA)」 環境再生保全機構 すこやかライフ  BCAAは、筋肉の分解を抑制して、筋肉のエネルギー源となります。COPDの人は、呼吸筋を激しく使うため呼吸筋の損傷を防ぐ、という意味でもBCAAは欠かせない栄養素です。

実際どういうふうに使い分けされているのか、ChatGPTに聞いてみました。以下はその答え。

During exercise, the body utilizes a variety of energy sources to meet the increased energy demands. The specific utilization of energy sources can vary depending on factors such as exercise intensity, duration, and individual fitness level. Here’s a breakdown of how different energy sources are differentially used during exercise:

  1. ATP (Adenosine Triphosphate): ATP is the primary source of energy for muscle contractions. It is stored in limited quantities within the muscles and is rapidly used during short bursts of high-intensity exercise. The body can generate ATP through different metabolic pathways, including the phosphocreatine system, glycolysis, and oxidative phosphorylation.
  2. Creatine: Creatine phosphate, stored in muscles, serves as a quick energy source for immediate ATP production. During short-duration, high-intensity exercises, such as weightlifting or sprinting, creatine phosphate rapidly donates its phosphate group to ADP (adenosine diphosphate), forming ATP.
  3. Glycogen: Glycogen is the storage form of glucose in muscle and liver tissues. It serves as an essential energy source during moderate to high-intensity exercise. Glycogen stored in the muscles can be broken down through glycolysis to produce ATP. The liver can also release glucose from glycogen into the bloodstream to maintain blood glucose levels during prolonged exercise.
  4. Glucose: Glucose is a simple sugar derived from dietary carbohydrates or glycogen breakdown. It circulates in the bloodstream and is taken up by working muscles to be used as an energy source. Glucose can be metabolized through glycolysis to produce ATP, providing energy during moderate to high-intensity exercise.
  5. Ketone Bodies: Ketone bodies, such as beta-hydroxybutyrate and acetoacetate, are produced by the liver during periods of prolonged fasting, low carbohydrate intake, or ketogenic diets. During exercise, the utilization of ketone bodies as an energy source becomes more prominent, especially during longer-duration, low-to-moderate intensity activities. However, the reliance on ketone bodies for energy may vary depending on an individual’s metabolic state and adaptation to utilizing fats for fuel.
  6. Branched-Chain Amino Acids (BCAAs): BCAAs, including leucine, isoleucine, and valine, are essential amino acids that can be metabolized by muscles during exercise. They can serve as a minor source of energy during endurance exercise, particularly when glycogen stores become depleted. BCAAs can be oxidized within the muscles to produce ATP, helping to spare muscle glycogen.
  7. Fatty Acids: Fatty acids are the main fuel source during low-to-moderate intensity and longer-duration exercises. Adipose tissue releases stored triglycerides, which are broken down into fatty acids and transported to the muscles for oxidation. Fatty acids undergo beta-oxidation in the mitochondria, generating ATP. However, high-intensity exercise relies more on carbohydrates and glycogen as a primary energy source, and fatty acid utilization decreases accordingly.

It’s important to note that the body dynamically shifts its reliance on different energy sources based on exercise duration, intensity, and individual factors. The interplay between these energy sources allows the body to meet the energy demands of various types of exercise.

 

ChemSketch(ケムスケッチ)でリン酸基の中の水酸基をイオンにする方法

ChemSketch(ケムスケッチ)では、どうすればリン酸基の中の水酸基をイオン化できるんだろうとしばらく悩んで、やっと方法を見つけました。

  1. メニューで Structure と Drawのうち、Structureを選ぶ。
  2. 変更したい水酸基-OHにカーソルをもっていくと、OHが四角い枠で囲われた状態になるので、(左)クリック。すると、点々で囲われたように表示が変わるので、この状態で右クリックし、現れるメニューからObject Propertiesを選択。
  3. C H n q V I N Aとならんでいるメニューのなかの、q (Charge)をクリック。
  4. すると今の場合 Value は0になっている(電荷はゼロ)ので、数値を-1に変更すして、applyをボタンを押す。

これで、 OH が  O- となり、めでたくイオン化されました。

 

ケムスケッチで水酸基をイオン化する方法がわかったところで、なぜカルボキシ基やこのリン酸の中の水酸基ーOHはHが電離するのに、アルコールの水酸基は電離しないんだろうという素朴な疑問が生じました。ネットであれこれしらべたら、要は、どっちがエネルギー的に安定か?という話です。アルコールの水酸基の水素が電離しないのは、電離してしまうとエネルギー的に安定しないから。一方、カルボキシ基やリン酸基の場合は、電離したほうが安定化するから。なぜ安定化するのかというと、「共鳴」するから。共鳴というのは、複数の同等の電子の配置が存在していて、電子がそれらの状態を全部とれるからということみたいです。カルボン酸だと、-C(=O)OHよりも -C(=O)O- のほうが、C(-O-)(=O)の配置もとれて共鳴できるというわけです。リン酸基も同様です。

補酵素NADHとNADPHとの違いは?NADPHは、脂肪酸、コレステロール、ヌクレオチドなど同化反応(高分子の生合成)で使われる電子供与体

生化学の勉強をしていると、NAD+, NADH, NADPH+, NADPH, FAD, FADH2といろいろ似たものが登場して頭が混乱させられます。たいていの場合、まずは解糖系、TCA回路、電子伝達系というエネルギー代謝経路を学び、その際にNAD+/NADH、FAD/FADH2が登場します。ところが、そのご、何かの機会でNADP+/NADPHが登場してきて、こんがらがるわけです。何が共通点で、何が相違点なのかを纏めておきます。

NAD+/NADH、FAD/FADH2、NADP+/NADPH は酸化還元反応で活躍する補酵素です(電子受容体(酸化型)/電子供与体(還元型))。酸化反応や還元反応では電子のやり取りがありますので、電子の担体(運び屋さん)という言い方もされますし、電子の受容体、電子の供与体などと言われることもあります。

NADHは、Nicotineamide Adenine Dinucleotideの略。水素Hがついているので還元型(還元された状態)。NADHという名前の文字のうち、N,A,Dは略号で、Hだけは水素そのもので、還元型であることを示しています。

NAD+(酸化型)  + 2e + H+ ⇔ NADH(還元型)

FADH2は、Flavin Adenine Dinucleotideの略。で水素が2つついているので(H2)、還元型。

FAD(酸化型)  + 2e 2H+ ⇔ FADH2(還元型)

NADPHは、Nicotineamide Adenine Dinucleotide phosphateの略。水素Hがついているのは、還元型。

NADP+(酸化型)  + 2e + H+  ⇔ NADPH(還元型)

NAD,NADP,FADはアデニンやリボース、リン酸エステルなど複雑な構造で圧倒されますが、これらは酵素による構造認識で重要なだけで反応に重要なのはニコチンアミドの部分やフラビンの部分だけです。それを知れば、複雑な構造を目にしてビビらなくて済みます。また、構造が異なるということは、その構造を認識できる酵素も異なるというわけなので、これらの補酵素が関与する化学反応も異なるということは理解できます。

下のの図中のニコチンアミドの6員環の中の炭素に、還元型では水素がひとつ付加して、N+の電荷もゼロになっています(NADHの構造式に描かれた2つの水素のうちの一つは、もともとついていたもの。NAD+では描かれていなかっただけです。)。

NADPは、NADにリン酸基がついたもので、それ以外の部分の構造はNADと同一です。このリン酸は、補酵素NADPが酵素に認識される際の構造的な特異性を生み出すために存在するものであって、リン酸基を他に供与したりするのに使われるものではありません。NAD+/NADHがエネルギー代謝(リン酸基が転移される反応が多い)で登場するため、紛らわしいので要注意。

  1. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges. Andrea M. Chánique1 and Loreto P. Parra Front Microbiol. 2018; 9: 194. Published online 2018 Feb 14. doi: 10.3389/fmicb.2018.00194 Different structural motifs enable the union of the coenzyme and give the specificity for NAD or NADP. Usually, enzymes preferring NADP have larger pockets with positively charged or hydrogen bond donating residues that interact with the phosphate group of the adenine ribose (Pick et al., 2014). NAD preferring enzymes contain negatively charged amino acids that generate repulsion toward NADP and form hydrogen bonds to the 2′-OH and 3′-OH of the adenine ribose (Petschacher et al., 2014).

NADHとNADPHとの違いは何かというと、NADHはエネルギー代謝(異化、つまり高分子の分解)の際に、電子受容体としてつかわれ、NADPHは同化反応(生体高分子の合成)の際に電子供与体として使われるという、使い分けです。

  1. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes. J Am Chem Soc. 2016 Jan 27; 138(3): 1033–1039. Published online 2016 Jan 3. doi: 10.1021/jacs.5b12252 Oxidoreductases, for example, rely on the nicotinamide coenzymes to supply them with the redox equivalents required to sustain their catalytic cycles. Two forms of natural coenzymes exist: the phosphorylated (NADP+/NADPH) and nonphosphorylated (NAD+/NADH) forms (Figure​Figure11A). Nicotinamide coenzymes essentially contain two structural motifs, the nicotinamide moiety conferring their electrochemical function (i.e., serving as an electron source or sink in the form of a hydride) and the adenosine dinucleotide moiety conferring the separation between anabolic and catabolic pathways. NADP is involved in anabolic redox processes, whereas NAD is mostly found in processes dealing with energy metabolism.

NADHとFADH2は、TCA回路で作られます。一方、NADPHは、ペントースリン酸回路で作られます。

NADPHの役割

NADPHの還元作用は、生体内で様々な役割を果たしています。

  1. 高分子の生合成(脂肪酸、コレステロール、アミノ酸、ヌクレオチドなどのde nove合成)
  2. 活性酸素種H2O2の消去(捕捉) (還元型グルタチオンGSHを再生あるいは抗酸化タンパク質チオレドキシン(TRX)を還元することによって)
  3. NADPH oxidases (NOXs) によるスーパーオキサイド (O2) 産生の際の補酵素として

NADHやFADH2と違って、ATP産生に使われるわけではありません。

  1. NADPH-The Forgotten Reducing Equivalent. Cold Spring Harb Perspect Biol . 2021 Jun 1;13(6):a040550. doi: 10.1101/cshperspect.a040550. Navdeep S Chandel (PubMED)
  2. SOSA (Superoxide Radical Scavenging Activity) 技術用語解説 活性酸素消去(活性酸素捕捉)フリーラジカルとは対になっていない孤立した電子を持っている物質の総称で、一般的に不安定で反応性が高い。一重項酸素は酸素ラジカルではないが、広義の活性酸素に含まれる。

アミノ酸20個の構造式の覚え方:官能基や基本骨格で分類して覚えると簡単!必須アミノ酸9個(10個)も。

蛋白質を構成するアミノ酸は20個あります。丸暗記するのはきついですが、構造が似ているものを分類しながら覚えれば、なんとか覚えられそうです。

1番簡単な構造のグリシンとアラニン

一番簡単な構造のアミノ酸1つ:グリシン

側鎖はH-  なので、20個のアミノ酸の中で唯一α炭素が不斉炭素ではありません。

炭素の鎖のみからなるアミノ酸4つ:アラニン、バリン、ロイシン、イソロイシン

アラニンは、側鎖がメチル基のみ  CH3-。グリシンの次に簡単な構造と言えます。

分枝(ぶんし)鎖アミノ酸3つ

分枝(ぶんし)鎖アミノ酸(Branched Chain Amino Acids; BCAA)は、サプリなどでBCAAとしてお馴染みだと思います。アラニンの先にメチル基が2つついて枝分かれした構造なのが、バリン (CH3)2-CH2-

バリンより一つ分、炭素の主骨格が長いのがロイシン。(CH3)2-CH2-CH2-

ロイシンの枝分かれしたメチル基がひとつ根元側にずれたのがイソロイシン。

CH3-CH2(-CH3)-CH2-

これで6個覚えられました。

*自分はうっかり間違えて、Branchedの「分枝」を「分岐」と書き間違えて「ぶんき」と呼んでいたことに最近気づきました。「分枝」は「ぶんし」で、「ぶんき」は「分岐」ですね。日本語はややこしい。

硫黄を含むアミノ酸2つ

つぎに、硫黄を含む2つを覚えましょう。

HS-C- の構造をもつのがシステイン。HS-CH2-

ちょっとかわっていて炭素と炭素の間に硫黄が挟まれて、

H3C-S-CH2-CH2- の構造をもつメチオニン。

水酸基を含むアミノ酸2つ

つぎは、水酸基をもつアミノ酸を覚えましょう。ベンゼン環に水酸基がついたチロシンはあとまわし。

アラニンの先端に水酸基がついた HO-CH2- を側鎖にもつのがセリン

炭素2個からなる骨格の内側のほうに水酸基がついた H3C-CH(-OH)- が スレオニン

さて、いよいよ、酸性アミノ酸と塩基性アミノ酸を覚えましょう。

酸性アミノ酸2つ

酸性になる理由はカルボキシ基を持つからです。アラニンの先にカルボキシ基がついたらアスパラギン酸(英語だとaspartate)。HOOC-CH2-

炭素の鎖が一つ分ながいのがグルタミン酸。HOOC-CH2-CH2-

酸性アミノ酸がアミドになった 2つ

カルボキシ基のOHがH2N-とおきかわってアミドになったもののうち、アスパラギン酸に対応するのが、アスパラギン。2HN-C(=O)-CH2-

グルタミン酸に対応するのが、グルタミン。2HN-C(=O)-CH2-CH2-

塩基性アミノ酸2つ

塩基性、いきます。炭素4つの鎖の先にアミノ基がついてイオン化しているのが

H3N(+)-CH2-CH2-CH2-CH2-  リジン。炭素4つの鎖。

側鎖の先のほうから考えた場合、先端の炭素に2つのアミノ基がついて、窒素を介したあと炭素が3つつながる主骨格の構造を持つのが、アルギニン。

H2N-C(=NH2 +) -NH- CH2-CH2-CH2- これも間にNが入っていますが、炭素の数は4つ。

ベンゼン環をもつアミノ酸2つ

さて次にベンゼン環をもつ2つを覚えます。

アラニンの先端にフェニル基がついた、そのまんまの名前のフェニルアラニン

フェニルアラニンのパラの位置に水酸基がついた、チロシン。さきほど水酸基をもつアミノ酸として、セリンとスレオニンを覚えましたが、チロシンにも水酸基があります。ただし、覚える都合上ベンゼン環をもつ2つとして覚えておくほうが覚えやすいと思います。

これで17個覚えました。残り3つは、環状構造を持ったアミノ酸です。

他の環の構造を持つアミノ酸3つ

イミダゾール(五員環で、Nが2つ)と炭素がつながったものを側鎖にもつのが、ヒスチジン。

インドール(六員環と五員環が複合した構造で五員環の角のひとつが窒素)と炭素を側鎖にもつのがトリプトファン。

さて20個目が、プロリンです。プロリンは構造が、ほかと比べると異質です。なにしろアミノ酸の共通要素であるαアミノ基が、側鎖と合体して環状構造を作ってしまっているのです。α炭素もその環状構造の一部になっています。

以上20個のアミノ酸でした。

ヒスチジン(イミダゾール)とトリプトファン(インドール)は少し覚えにくいので、何回も構造を紙に書き出してみる必要があります。窒素が入った環構造の化合物は一気に覚えたほうが、苦手意識が払しょくできます。

  1. 窒素を含む有機化合物、生体に重要な化合物の構造を全部、丸暗記する方法

あとは、比較的覚えやすいと思います。視覚的に形で覚えることプラス、構造を要素(官能基)にわけて、どんな要素(官能基)からなるかを覚えること。その際、酸性、塩基性などの性質も併せると頭の中で整理しやすいと思います。

必須アミノ酸

20個のアミノ酸、グリシン、アラニン、バリンロイシンイソロイシン、システイン、メチオニン、セリン、スレオニン、アスパラギン酸、グルタミンサン、アスパラギン、グルタミン、リジン、アルギニン、フェニルアラニン、チロシン、ヒスチジントリプトファン、プロリンの内、必須アミノ酸は、9個あり、バリンロイシンイソロイシンメチオニンスレオニンリジンフェニルアラニンヒスチジントリプトファンです。乳幼児の場合はこれらに加えてアルギニンも必須アミノ酸になります。

必須アミノ酸9個の覚え方ですが、構造を先に覚えていれば、

炭素の分岐を持つアミノ酸:バリンロイシンイソロイシンスレオニン

二重結合を含む環を持つアミノ酸、ただしチロシンはフェニルアラニンを水酸化すればいいので除外:フェニルアラニンヒスチジントリプトファン

塩基性アミノ酸ただしアルギニンは乳幼児のみ:リジン、(アルギニン)

残り一つがメチオニンです。

炭素の枝分かれだったり、二重結合を含む環だったり、ぱっと見複雑な構造を持つものというイメージでいいのではないでしょうか。それプラス、塩基性アミノ酸、そして、メチオニンと。

なお、上の構造式の図はケムスケッチ(Chem-Sketch)を利用しました(デフォルトで用意されているアミノ酸の構造式そのままです)。折れ線の角の点や分岐の中心の点は、炭素およびそれに結合した水素が省略されています。つまり折れ線の角の点は、-CH2- の意味です。分岐の場合(他の官能基が付いている場合)は、もちろん、炭素の手の合計が4本になるように水素の数がかわります。折れ線の端のメチル基CH3- は、省略してしまう描き方もありますが、ここではわかりやすさのためにあえて描いているようです。

また、アミノ酸のカルボキシ基やアミノ基は、生理的な条件下では電離していると思いますが、ここでは電離していない状態の構造が描かれています。

参考資料

  1. Chem-Sketch(構造式を描画するソフトウェア)
  2. Bruice Organic Chemistry

 

クリニカルクエスチョンからリサーチクエスチョンへ 作業仮説の設定 PICO/PECO FINER

クリニカルクエスチョン(CQ)とは何か

日常の臨床で疑問に思うことが何一つない臨床医はいないであろう.‥ 自分の行う意思決定すべてが証明された根拠に基づいていることはまったくないはずである.‥ 問いに対して明確で決定的な答えが得られることは少ない.というのも一般的にエビデンスレベルがもっとも高いと考えられているランダム化比較試験(RCT)の結果をもってしても,その研究が対象とした患者群と目の前の患者が完璧に一致することはほぼないため,絶対的な根拠とはなりえないからである.臨床現場において,あらゆる意思決定の段階で生まれるありのままの疑問,それが“CQ”である.(クリニカルクエスチョンからリサーチクエスチョンへ 整形外科)

クリニカルクエスチョン(CQ)の分類

  1. 病気や診療の実態を調べる
  2. 診断法を評価する
  3. 要因とアウトカムの関連性を調べる
  4. 治療・予防法の効果を調べる

参考:クリニカルクエスチョンからリサーチクエスチョンへ 整形外科

クリニカルクエスチョンが得られたら、次に、新規性、研究コスト、研究倫理などの確認をして、研究が実施可能となるようなリサーチクエスチョンにまで昇華させる必要があります。多少漠然としていた(抽象的だった)クリニカルクエスチョンをより具体的なものにして、検証可能な作業仮説(testable hypothesis)を導くのです。

PICO/PECO

FFINER;FIRM2NESS

以下、各科の先生がまとめたガイド記事のまとめです。

整形外科

  1. クリニカルクエスチョンからリサーチクエスチョンへ 整形外科71巻6号:514~519,2020

作業療法士

  1. 臨床家のための研究のすすめ:実践編 第1回「リサーチ・クエスチョンを作る」菅野圭子 作業療法33巻2号2014年4月(PDF

理学療法士

  1. D-3 理学療法研究方法論(EBPT含む) 日本理学療法士協会生涯学習課(2017年4)

薬剤師

  1. 医療現場の疑問を整理する 第1章 医療現場の疑問をリサーチ・クエスチョンにする

睡眠時無呼吸症候群の恐ろしさ

人生で成功できるかどうかを決める一つの要因は、睡眠の質なんじゃないかと最近思います。ぐっすり眠れた日の午前中は仕事が捗ります。睡眠不足で眠気と戦いながら机に座っていても、全く頭が働かないため仕事の能率が上がりません。睡眠の質の良しあしで、仕事の能率は10倍くらい軽く変わってくるのではないかというのが、自分の感覚です。具体的にいうと、仕事で作成すべき文書にとりかかっているときに、頭が冴えて居れば30分から1時間である程度のクオリティの文章が出来上がります。しかし、頭の働きが鈍い日だと、1日朝から晩までかかり切りなのにほとんど使い物にならない文章しか出てきません。

睡眠の問題が単に「時間」だけであれば、自分で睡眠不足を自覚できるので、自律すれば済む話ですが、恐ろしいのは、眠ってはいるのに質の良い睡眠になっていないことに気付けていない場合です。これは実は切実な問題で、「睡眠時無呼吸症候群」と呼ばれる病気があります。この病気の怖いところは、自分一人で寝ている限り気付けないこと。隣で寝ている人が夜中に起きて観察してくれて初めて気づくことができる病気です。

睡眠時無呼吸症候群とは

  • 通称 Sleep Apnea Syndrome (SAS)
  • 正式名称 閉塞性睡眠時無呼吸症(OSA)
  • 統計 日本で250万人以上の潜在患者
  • リスク 重症の場合、高血圧、心筋梗塞、心不全、心房細動、脳梗塞などになるリスクが増大。糖尿病や脂肪肝の悪化要因にも。AHIが5以上の睡眠呼吸障害がある場合には、循環器病による死亡リスクが5.2倍に上昇
  • 症状 動脈血酸素飽和度(SpO2)が3~4%以上低下した状態、もしくは覚醒を伴う状態(低呼吸)が1時間に何回も起こる。SpO2は正常値96%以上に対して、無呼吸の場合90%以下に低下
  • 指数 睡眠1時間あたりの「無呼吸」に加え「低呼吸」との合計回数を無呼吸低呼吸指数(AHI:Apnea Hypopnea Index)と呼び重症度を分類する際に使用 5≦AHI<15回 軽症、15≦AHI<30回 中等症、30回≦AHI 重症
  • 病型 閉塞型(OSA:Obstructive Sleep Apnea) ほとんどはこっち いびきが発生、中枢性(CSAS:Central Sleep Apnea syndrome) いびきが発生しない

参考:睡眠時無呼吸症候群の基礎 Dクリニック東京ウェルネス

睡眠時無呼吸症候群と高血圧

睡眠中に無呼吸が繰り返されると、そのたびに脳の覚醒が促されるために交感神経が興奮してしまいます。これが心臓の血液排出量を増加させることとなり、血圧を上げてしまうのです。‥ 一方、睡眠中に何回も呼吸が停止することで、体内は慢性的な酸素不足に陥ります。‥ 心臓は心拍数を上げて全身に酸素を送ろうとします。その結果、血圧を上昇させることとなります。こうして、寝ている間に二つの作用によって高血圧を引き起こしているのが、睡眠時無呼吸症候群です。(「睡眠時無呼吸症候群×高血圧」という時限爆弾を抱える日本人 末松 義弘2020.2.18 幻冬舎GOLD ONLINE)

下の睡眠時無呼吸症候群の測定記録例をみると、上の説明にあるように、確かに酸素飽和度SpO2が下がっているタイミングと脈拍が上昇しているタイミングが一致しています。

うつ病でエネルギーが枯渇するのは、エネルギー源が枯渇しているからか?

うつ病は心の風邪などといわれますが、実際には脳の病気でもありますし、エネルギーが不足して体が動かないという意味では体の病気とも言えます。うつ病の原因には諸説ありますが、何が根本的な要因なのかは依然として不明です。

うつ病の病態として体を動かすことができないくらいエネルギー不足を感じることがあると思います。そんな状態では体の中でのエネルギー代謝はどうなっているのでしょうか。本当にエネルギー源であるATP,グルコースなどの量に変化が見られるのでしょうか。

 

  1. Metabolomics of Major Depressive Disorder: A Systematic Review of Clinical Studies Cureus. 2022 Mar; 14(3): e23009. Published online 2022 Mar 9. doi: 10.7759/cureus.23009
  2. Plasma metabolome analysis of patients with major depressive disorder  PubMED Psychiatry Clin Neurosci . 2018 May;72(5):349-361. doi: 10.1111/pcn.12638. Epub 2018 Mar 3. Phosphoethanolamine, Taurine, Aspartic acid, Tyrosine, Methionine, Asparagine, Glycerophosphocholine, Hypotaurine, ATP, ADP, Histidine, Lysine, ADMA, Phenylalanine, 2-Aminnoadipic acid.
  3. Plasma metabolome analysis of patients with major depressive disorder Psychiatry and Clinical Neurosciences 2018; 72: 349–361doi:10.1111/pcn.12638
  4. A GC–MS urinary quantitative metabolomics analysis in depressed patients treated with TCM formula of Xiaoyaosan Journal of Chromatography B Volume 1026, 15 July 2016, Pages 227-235

参考サイト

  1. ニューロンが合成するニューロステロイドのノンゲノミック作用とゲノミック作用 日本生殖内分泌学会雑誌(2003)8:19-26
  2. ステロイドホルモンの生合成と代謝 臨床化学 29:2-14,2000
  3. “こころ”を理解する近道としての脳内物質への関心からその探求に挑む。  2014年に、ニワトリの視床下部漏斗部からNPGL(=Neurosecretory protein GL)と命名した小タンパク質をコードしている前駆体遺伝子を発見 『マウスにおいて、NPGLが食欲調節に関与する』、『ラットでは、NPGLが飢餓時や血中のインスリン濃度が低いときに発現が上昇し、高カロリー食下では過食と脂肪合成を促し肥満を引き起こす』