- Temporal BMP4 effects on mouse embryonic and extraembryonic development Nature volume 634, pages652–661 (2024) Published: 18 September 2024 https://www.nature.com/articles/s41586-024-07937-5
神経誘導に必要なシグナル経路はBMP、FGF、WNTのどれでしょうか?カエルやマウスやニワトリの論文をバラバラに読むと、いろいろなシグナルの重要性が報告されており、どれが本当のところ重要なのか整理がつきにくくなってきます。
The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes.
The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module BMC Developmental Biology volume 11, Article number: 74 (2011)https://bmcdevbiol.biomedcentral.com/articles/10.1186/1471-213X-11-74
ニワトリ胚の神経誘導はカエルほど単純ではないようです。
In Xenopus, the release from the inhibitory, epidermal inducing signal bone morphogenetic protein-4 (BMP-4) by antagonizing secreted factors such as chordin, noggin, and follistatin, or by simple cell dissociation, seems to be sufficient to make ectodermal cells develop into neural tissue. Several lines of evidence in amniotes suggest a much higher degree of complexity. In the chick, inhibition of the BMP signaling pathway does not lead to neural differentiation, nor can BMPs prevent initial induction. However, antagonism between BMP-4 and chordin seems to play a role in controlling the extent of the neural plate once it is formed.
Cell Lineage and Fate Determination 1999, Pages 437-449 29 – More to Neural Induction Than Inhibition of BMPs Andrea Streit , Claudio D. Stern https://www.sciencedirect.com/science/article/abs/pii/B9780125052559500304?via%3Dihub
Consensus.aiに訊いてみました。
神経誘導に必要なシグナル:BMPかFGFか
神経誘導は、胚の外胚葉から脊椎動物の神経系を生成する最初のステップです。この過程において、BMP(骨形成タンパク質)とFGF(線維芽細胞成長因子)のシグナルがどのように関与しているかについて、多くの研究が行われています。
主要な知見
BMPの抑制が必要だが不十分
FGFシグナルの重要性
BMPとFGFの相互作用
モデル生物間の違い
結論
神経誘導にはBMPシグナルの抑制が必要ですが、それだけでは不十分であり、FGFシグナルも重要な役割を果たします。これらのシグナルは相互に作用し、神経運命の指定を促進します。したがって、神経誘導にはBMPの抑制とFGFシグナルの両方が必要です。
カエル
ニワトリ
Post-transcriptional tuning of FGF signaling mediates neural crest induction Jacqueline Copeland and Marcos Simoes-Costa simoescosta@cornell.eduAuthors Info & Affiliations PNAS December 21, 2020 117 (52) 33305-33316https://www.pnas.org/doi/10.1073/pnas.2009997117
15 June 2000 Region-specific activation of the Xenopus Brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos Walter Lerchner, Branko V. Latinkic, Jacques E. Remacle, Danny Huylebroeck, James C. Smit
Brachyury Knockdown Phenotype in Xenopus
Brachyury (Xbra) is a crucial gene involved in mesoderm formation and notochord differentiation in vertebrates, including Xenopus. The following synthesis presents the key findings from multiple research papers on the phenotype observed when Brachyury is knocked down in Xenopus.
Key Insights
- Failure in Gastrulation Movements:
- Down-Regulation of Downstream Genes:
- Morphological Defects:
- Both genetic knockout (KO) and morpholino-mediated knockdown (KD) of Brachyury in Xenopus result in virtually identical morphological defects, indicating the critical role of Brachyury in early development2.
- Off-Target Effects and Immune Response:
- Morpholino-mediated knockdown of Brachyury can induce off-target splicing defects and a systemic immune response, which can be mitigated but not entirely eliminated by optimizing morpholino dosage and incubation conditions2.
Conclusion
Knockdown of Brachyury in Xenopus leads to significant developmental issues, primarily characterized by the failure of gastrulation movements due to disrupted convergent extension. This is accompanied by the down-regulation of key downstream genes like Xwnt11. While both genetic knockout and morpholino-mediated knockdown produce similar morphological defects, the latter can also cause off-target effects and immune responses. These findings underscore the essential role of Brachyury in early vertebrate development and the complexities involved in gene knockdown studies.
(consensus.ai)
Consensus.aiによるまとめ。
Introduction
The transplantation of the node, a critical embryonic structure, has been studied for its ability to induce ectopic body axes in both mice and chicks. This research explores the node’s role in axis formation and its potential to organize and pattern embryonic development when transplanted to non-native locations.
Key Insights
- Induction of Ectopic Neural Axis in Mice:
- Transplanting the mouse node to a posterolateral location in a host embryo induces a second neural axis and ectopic somites. The graft predominantly forms notochord and endoderm, while the host contributes to neurectoderm and somites.
- Induction of Ectopic Axis in Chicks:
- Hensen’s node in chick embryos can induce a complete embryonic axis, including a fully patterned central nervous system, when transplanted to an ectopic site. This includes host-derived neural tissue.
- Role of Node in Axis Formation:
- The mouse node is crucial for the formation of the notochord, floor plate, and gut endoderm. Its ablation leads to the recruitment of surrounding tissues to restore the neural tube and paraxial mesoderm, although the body axis may be foreshortened and somite formation delayed.
- Synergistic Activity in Axis Induction:
- In mice, the combination of the early gastrula organizer (posterior epiblast), anterior visceral endoderm, and anterior epiblast is necessary to induce anterior neural structures and form an ectopic axis. The anterior germ layer tissues alone do not act as a classical organizer5.
- Molecular Mechanisms in Chicks:
- The protein Tsukushi (TSK) in chicks inhibits BMP signaling, which is essential for the formation of Hensen’s node and the induction of an ectopic node when combined with the middle primitive streak7.
Conclusion
The transplantation of the node in both mice and chicks can induce the formation of ectopic body axes, demonstrating its critical role in embryonic patterning. In mice, the node primarily contributes to the notochord and endoderm, while(全然対比になっていない。。) in chicks, Hensen’s node can induce a complete axis including neural tissues. The induction of anterior neural structures in mice requires a combination of specific germ layer tissues, highlighting the complexity of axis formation. Molecular mechanisms, such as BMP inhibition by Tsukushi in chicks, further elucidate the processes involved in node-induced axis formation.
nogginは有名ですがnorrinは初めて知りました。まさかミスプリじゃないよねと思ってChatGPTで確認したところ、もちろん別の遺伝子でした。
Patterning mechanisms controlling vertebrate limb development. J. Capdevila, J. C. I. Belmonte · 2001 脊椎動物の四肢芽では、シグナル伝達経路間の複雑な相互作用により、四肢の位置決め、成長、パターン形成が制御されます。 https://www.annualreviews.org/content/journals/10.1146/annurev.cellbio.17.1.87 本文有料 総説論文
Analysis of Hox gene expression in the chick limb bud. C. Nelson, Bruce A. Morgan, Ann C. Burke+7 more · 1996年5月1日 肢芽における Hox 遺伝子の発現は、肢の近位遠位節 (上腕、下腕、手) の指定とパターン形成に関連して、最大 3 つの独立した段階で制御されます。https://journals.biologists.com/dev/article/122/5/1449/39007/Analysis-of-Hox-gene-expression-in-the-chick-limb
大雑把にいうと、分子生物学はDNAの科学、生化学はタンパク質の科学と捉えてよいものでしょうか?ChatGPTに訊いてみました。
分子生物学とは?
- 分子生物学は、DNA、RNA、タンパク質の相互作用を中心に、生物の遺伝情報の伝達と機能を探る学問です。
- 遺伝子の複製(DNAのコピー)、転写(DNAからRNAへの変換)、翻訳(RNAからタンパク質への変換)など、遺伝情報がどのようにして細胞内で利用されるかを研究します。
- たとえば、遺伝子の発現調節、遺伝子変異、シグナル伝達などが分子生物学の対象となります。
生化学とは?
- 生化学は、生物を構成する化学的な物質やその化学反応を研究する学問です。
- タンパク質に関する研究は生化学の大きな部分を占めますが、それだけではなく、脂質、糖、核酸、代謝経路(例えばエネルギーの生成や利用)、酵素反応など、生物のあらゆる化学反応が対象です。
- 酵素の機能や、細胞の代謝過程における化学反応の詳細なども生化学の主要な研究テーマです。
まとめ:
- 分子生物学=「DNAや遺伝子の科学」に近いが、実際にはRNAやタンパク質も含む遺伝情報の流れ全体を研究する。
- 生化学=「生体内の化学反応」や「タンパク質を含む生体分子の機能」を広く研究する。
したがって、「分子生物学がDNAの科学、生化学がタンパク質の科学」という理解は、分子生物学と生化学の一部を反映していますが、全体の範囲や対象を理解するにはもう少し幅広く捉える必要があります。
(ChatGPT 4o)
Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage https://www.biorxiv.org/content/10.1101/2020.07.16.167320v1.full
Developmental Cell Volume 1, Issue 5, November 2001, Pages 605-617 Journal home page for Developmental Cell Review Nodal Signaling in Early Vertebrate Embryos: Themes and Variations https://www.sciencedirect.com/science/article/pii/S1534580701000764
TGF-β Family Signaling in Early Vertebrate Development June 2017Cold Spring Harbor Perspectives in Biology 10(6):a033274 DOI:10.1101/cshperspect.a033274 https://www.researchgate.net/figure/TGF-b-family-signaling-gradients-during-gastrulation-A-Embryonic-tissues-patterned-by_fig1_317494952
上肢や下肢が出る位置はどのようにして決まるのでしょうか?体軸の位置はHOXコードで決まるのだとすれば、ある特定のHOX遺伝子産物が転写制御因子となって上肢や下肢の肢芽で発現するTbx5やTbx4の発現を直接制御するのでしょうか(エンハンサーかプロモーターに特異的に結合するなどして)?
下の総説によれば、HOX遺伝子が活性化や抑制に働くようです。
A Combination of Activation and Repression by a Colinear Hox Code Controls Forelimb-Restricted Expression of Tbx5 and Reveals Hox Protein Specificity Satoko Nishimoto,Carolina Minguillon,Sophie Wood,Malcolm P. O. Logan Published: March 20, 2014 https://doi.org/10.1371/journal.pgen.1004245
最近の総説論文を読むと, HOXコードで前肢の出る位置は決まるようですが、そう単純ではなさそうです。ただTbx5はFgf10遺伝子のプロモーターに直接結合して発現を誘導するそうです。下肢については、前肢ほどには研究がなされておらず、HOXコードで位置が規定されるのか、FGF10を発現させるものが何なのかについては報告がなさそうです。
https://journals.biologists.com/dev/article/147/17/dev177956/225797/Establishing-the-pattern-of-the-vertebrate-limb
左右差を生み出す最初の仕組みは、マウスの場合は原始結節(2層の細胞層)の下側(中胚葉由来である脊索が脊索板になって内胚葉の層と一体化している)の細胞がもつ線毛の回転により左向きの水流が生じて、それを原始結節の両側に存在する動かない線毛を持つ細胞が感知して、左側に特異的な遺伝子発現を始めるというものでした。
動かない線毛を持つ細胞は左右両側にありますが、その線毛に存在するカルシウムチャンネルPkd2は正中線側に偏って存在しているため、左向きの水流で曲げられた線毛の正中線側の部分は、左側の細胞では引っ張られ、右側の細胞では表面が縮まることになります。張力によって開くカルシウムチャネルPkd2は、左側でのみ開くので、Ca濃度上昇に依存した細胞内の変化が、特異的な遺伝子発現につながるわけです。その細胞内変化とはどのようなものでしょうか。
notchは原始線条nodeのmotile ciliaをもつ細胞でnodal遺伝子発現を誘導するのでしょうか?