月別アーカイブ: 2020年12月

telemedicine, telehealth テレメディシン、テレヘルスとは?その将来性

テレメディシン(telemedicine)は、患者と医師が離れた場所にいて、通信手段を用いて診察を行うことです。テレヘルス(telehealth)もテレメディシンと同じ意味で使われますが、もう少し広義です。

テレヘルスの過去、現在、未来

Is Telemedicine The Future Of Health Care? 2020/05/17 CNBC

P1,P1A,P2,P2A,P3,P3A,BSL1,BSL2,BSL3バイオセーフティレベルの種類

バイオセーフティレベルの2種類の呼称

  1. バイオセーフティマニュアル (OIST) バイオロジカルセーフティレベルは、2種類ある。一つは、遺伝子組換え実験に適用する実験分類で、哺乳綱及び鳥綱への病原性に基づきクラス1~クラス4が設定されている。核酸供与体及び宿主の実験分類とその他の条件を考慮して、
    Protection Levelと呼ばれる P1 ~ P 4までの拡散防止措置レベルが決定される。もう一つは、ヒトへのリスクを基準として、病原体等に適用するもので Biosafety Levelと呼ばれ、BSL1 ~ BSL4まで4レベルがある。2つのバイオロジカルセーフティレベルの危険性及び必要とする設備等は、ほぼ同等であるが、対象となる生物種は若干異なるので注意が必要である。
  2. セルプロセッシング施設および バイオセーフティ施設への取り組み (Vol.89 No.05 430-431 2007.05 医薬品産業における日立グループのソリューション )(WHO)の指導によりBSL1,BSL2,BSL3,BSL4に呼称変更 されている。

P1AのAの意味

  1. 遺伝子組換え実験に必要な拡散防止措置 (大阪大学)動物使用実験を行う場合は、逃亡防止(2重ドアやネズミ返し等)を設置し、レベル表示の後ろに「animal」の「A」を付す(例:P1A)。

参考

  1. 遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律等に関する説明資料 平成18年10月文部科学省研究振興局ライフサイエンス課生命倫理・安全対策室
  2. 遺伝子組換え実験を始める前に-これだけは知っておきたい基本情報-平成19年7月3日ライフサイエンス課生命倫理・安全対策室

ユビキチン化の構造的な多様性とそれらの多彩な生理作用

ユビキチン化は、タンパク質分解の仕組みだと覚えていたのですが、話はそう単純ではなくて蛋白質分解以外の役割も新たに見つかってきて、だいぶややこしい話になっています。

ユビキチン化の生理作用の多様性の発見

ユビキチンによるタンパク質の翻訳後修飾は、プロテアソーム依存的な分解だけでなく、シグナル伝達DNA修復タンパク質の輸送、さらにはオートファジー・リソソーム系による分解など広汎な生命機能を制御することが明らかになってきた。(ユビキチンに関する研究 蛋白質代謝プロジェクト

ユビキチン化を司る酵素E1,E2,E3の多様性

ユビキチン修飾系は、E1ユビキチン活性化酵素)、E2ユビキチン結合酵素)、E3ユビキチンリガーゼ)の3種の酵素活性を介して、標的タンパク質Lys残基側鎖に8.6kDaの低分子量球状タンパク質であるユビキチンをイソペプチド結合的に付加する翻訳後修飾系です。ヒトには2種のE1、約50 種のE2、約600種のE3が存在し、E3がユビキチン化すべき標的タンパク質を時空間特異的に識別するという最も重要な役割を担っています。(大阪市立大学 研究内容

E1,E2,E3の役割の説明がわかりやすい図。


(図の転載元:老年医学の展望 ユ ビキチ ンシグナ リングとその生物学的意義

ユビキチン鎖の構造の多様性と生理作用の多様性との対応関係

生化学 第85巻 第6号,pp.405―413,2013 ポリユビキチン鎖を標的とした NF-κB の新たな調節機構 に、ユビキチン鎖の多様性とその生理作用がわかりやすくまとまっていました。

新学術領域研究ユビキチンネオバイオロジー(H24~H28年度)という新学術領域研究があったくらいに、ユビキチンの構造と機能の多様性は奥が深いです。このサイトにある、図1.ユビキチン修飾の構造多様性と機能 (2017年現在)もわかりやすい。

ユビキチン研究のためのツール

  1. 各種ポリユビキチン鎖 フナコシ

参考

  1. 分岐型ユビキチン鎖とアセチル化ユビキチン Journal of Japanese Biochemical Society 92(1): 57-63 (2020) doi:10.14952/SEIKAGAKU.2020.920057

ガドリニウム(Gd)造影剤の種類

造影剤とは

造影剤は、X線検査やMRIなど様々な画像診断において濃淡を強調するために用いられる物質のことです。

  1. 造影剤の使い分けと安全管理 2015年 病薬アワー

ヨードは、ヨウ素(iodine)の別名。原子番号53の元素。期待がすみれ色であることから、すみれを意味するギリシャ語にちなんで名づけられた。

  1. ヨウ素 ウィキペディア

MRIで用いられる造影剤

キレートの構造から、線状型(直鎖型)と環状型とに分類される。直鎖型は安定性が低く、最近は使われなくなってきているそうです。

線状型

  1. ガドジアミド 水和物 商品名:オムニスキャン(第一三共)
  2. ガドペンテト 酸メグルミン 商品名:マグネビスト(バイエル薬品)
  3. ガドキセト酸ナトリ ウム

環状型

  1. ガドテリドール
  2. ガドテル酸 メグルミン
  3. ガドブト ロール

 

  1. PMDA 調査結果報告書 平成 29 年 11 月 6 日 独立行政法人医薬品医療機器総合機構
  2. MRI用造影剤(Gd造影剤) 九州大学歯学部
  3. 医薬品インタビューフォーム マグネビスト静注

 

ガドリニウム(Gd)造影剤を取り巻く状況

もともと毒性があるガドリニウムは速やかに体外へ排出されるようにキレート構造を付与されているが、2013年にGdの脳での沈着が報告されたことから、安全性への懸念が生じている。

  1. ガドリニウム造影剤の脳沈着のリスクと今後の動向 Innervision (32 6) 2017
  2. ガドリニウム造影剤安全性情報UP TO DATE 第53 回日本小児放射線学会学術集会“Pediatric radiology is fun!”より  日本小児放射線学会雑誌 2017 年 33 巻 2 号 p. 91-96

呼吸器外科 気管狭窄症 気管狭窄症(tracheal stenosis)の手術の例

 

気道ステント留置術

気道ステント留置術の原理の説明。

S&G Biotech-EGIS Airway Stent

  1. Airway stents Erik Folch, Colleen Keyes Annals of aCardiothoracic Surgery レビュー論文

ダイナミックYステントの留置の実際

実際の手技の解説。

Chapter 109 final Tracheal Bi bronchial Y Stent  2015/01/31  AirwayOnDemand from Dr. Will Rosenblatt

Dynamic™ (Y) Stent Case Study – Dr. David Duhamel 2014/10/30   BostonScientificEndo
https://www.youtube.com/watch?v=LxEMrzWLXV4

  1. NOVATECH® GSS™ Tracheobronchial silicone stents

 

気道狭窄の切除と再建の手術の様子の動画。
Tracheal stenosis—resection and reconstruction

気管狭窄症の手術の難しさ

気道狭窄は我々小児外科医が扱う疾患の中でも、治療の難易度が非常に高いもののひとつです.手術もそうですが,術後に厳密な呼吸・循環管理が必要なことから,十分な経験を持った小児外科,心臓血管外科,麻酔科,循環器,集中治療のチームがあって初めて行うことができます.(静岡県立こども病院

咽頭(いんとう pharynx)と喉頭(こうとう larynx)の解剖学

咽頭(いんとう)とは

咽頭は、鼻腔、口腔から続く部分で、喉頭や食道につながります。(のどの仕組み

喉頭(こうとう)とは

咽頭と喉頭とは字が似ていて混同しそうですが、喉頭(こうとう)はのどぼとけの部分であり、声帯が存在している器官の名称。つまり喉頭は、声を出す器官というわけですね。

喉頭は、いわゆる「のどぼとけ」のところにある器官で、気管と咽頭(いんとう)をつないでいます(図1)。喉頭では、鼻や口から取り込まれた空気は気管へ、飲食物は食道へと振り分けられます。喉頭には左右一対の声帯(せいたい)があり、(がん情報サービス)

臨床試験のデザインと倫理の問題

ランダム化試験試験が最も厳密に対照との比較を可能とするということが臨床研究の教科書に説明されていますが、それを読んで、非常に有望な新薬が現れたときに誰も対照群に割り当てられたくはないだろうになぜそんなことができるのだろうと不思議に思っていました。

当然といえば当然なのですが、その点が非常に大きな倫理的な問題として浮かび上がった事例が過去にあったんですね。PLX4032というロシュが開発した薬で、メラノーマの中でもBRAF遺伝子に変異がある患者さんを対象とした臨床試験でした。Dr. Paul Chapman医師がリーダーとして行った臨床試験です。この臨床試験に参加したいとこ同士の二人、Thomas McLaughlinさんは新薬に割り付けられ、もう一人のいとこのBrandon Ryanさんは対照群に割り付けられました。その結果、メラノーマの程度ではより悪かったマクローリンさんが助かり、マクローリンさんよりも進行度合いが遅かったライアンさんが無くなるという結末を迎えてしまったものです。二人を治療したDr. Bartosz Chmielowski医師は、非常に辛い立場に立たされましたがこの臨床試験のプロトコルに従いました。

京都大学大学院医学研究科 聴講コース 臨床研究者のための生物統計学「統計家の行動基準 この臨床試験できますか?」

  1. New Drugs Stir Debate on Rules of Clinical Trials The New York Times By Amy Harmon Sept. 18, 2010

ホジキンリンパ腫とは

 

ホジキンリンパ腫と共に生きる人の体験談

  1. 入退院を繰り返して8年 それでも自分らしく生きる 悪性リンパ腫の瀬古昴さん 12/14(月) 14:00 時事通信 YAHOO!JAPAN

ホジキンリンパ腫の科研費研究

    1. ホジキンリンパ腫における多重蛍光染色を用いた腫瘍微小環境の同定と予後に与える影響 2020-04-01 – 2023-03-31 高橋 宏通 日本大学, 医学部, 助教 (50791745) 小区分50020:腫瘍診断および治療学関連 若手研究
    2. ホジキン様ATLLと古典的ホジキンリンパ腫の周囲環境 2020-04-01 – 2023-03-31 大島 孝一 久留米大学, 医学部, 教授 (50203766) 小区分49020:人体病理学関連 基盤研究(C)
    3. 小児ホジキンリンパ腫の病態解明による治癒率のさらなる向上への試み 2019-04-01 – 2024-03-31 古賀 友紀 九州大学, 医学研究院, 准教授 (60398071) 小区分54010:血液および腫瘍内科学関連 基盤研究(C)
    4. HE、蛍光免疫染色、FISH法のWSI解析の発展及びホジキンリンパ腫研究への応用 2017-04-01 – 2020-03-31 村瀬 貴幸 名古屋市立大学, 大学院医学研究科, 准教授 (40315875) 基盤研究(C)
    5. 活性酸素制御を介したホジキンリンパ腫細胞の未熟性の維持と分化誘導機構の解析 2017-04-01 – 2020-03-31 堀江 良一 北里大学, 医療衛生学部, 教授 (80229228) 基盤研究(C)
    6. 多発性骨髄腫及びホジキンリンパ腫のPU.1発現誘導を利用した治療応用の基礎研究 2014-04-01 – 2018-03-31 奥野 豊 熊本大学, 大学院生命科学研究部(医), 准教授 (80363539) 基盤研究(C)
    7. ホジキンリンパ腫におけるCD30によるHSP90誘導を介したシグナル伝達制御 2014-04-01 – 2017-03-31 堀江 良一 北里大学, 医療衛生学部, 教授 (80229228) 基盤研究(C)
    8. B細胞リプログラミングとヒト化マウスモデルによるホジキンリンパ腫発症機構の解析 2014-04-01 – 2018-03-31 渡邉 真理子 北里大学, 医療衛生学部, 助教 (90270701) 基盤研究(C)
    9. わが国初の小児ホジキンリンパ腫における予後予測因子同定および病態解析 2012-04-01 – 2014-03-31 大場 詩子 九州大学, 大学病院, 医員 (20624935) 若手研究(B)
    10. EBウイルス由来機能性RNAを標的としたホジキンリンパ腫の実験的分子標的治療 2012-04-01 – 2015-03-31 和田 龍一 日本医科大学, 医学部, 准教授 (20260408) 基盤研究(C)
    11. LMP-1によるCD30誘導の解析にもとづくホジキンリンパ腫発症の分子機構の解明 2011 – 2013 堀江 良一 北里大学, 医学部, 准教授 (80229228) 基盤研究(C)
    12. ホジキンリンパ腫の癌幹細胞と分化の分子基盤の解析 2011 – 2013 渡邉 真理子 北里大学, 大学病院, 研究技能員 (90270701) 基盤研究(C)
    13. ホジキンリンパ腫の微小環境におけるリプログラミングに関わる小分子RNAの解析 2011-04-01 – 2013-03-31 幸谷 愛 東海大学, 創造科学技術研究機構, 准教授 (00517477) 生物系 新学術領域研究(研究領域提案型)
    14. ホジキンリンパ腫の形態学的亜型に関する臨床病理学的研究 2009 – 2010 塩沢 英輔 昭和大学, 医学部, 講師 (60365757) 若手研究(B)
    15. 難治性ホジキンリンパ腫の臨床病理学的解析 2008 – 2010 浅野 直子 信州大学, 医学部附属病院, 病院助教 (90467192) 若手研究(B)
    16. 自己抗体結合性非ホジキンリンパ腫特異抗原の同定と診断マーカーの検索 2007 – 2008 中西 豊文 大阪医科大学, 医学部, 准教授 (10247843) 基盤研究(C)
    17. 腫瘍免疫に基づくホジキンリンパ腫の病態解明と新規治療法の開発研究 2007 – 2009 上田 龍三 名古屋市立大学, 大学院・医学研究科, 教授 (20142169) 基盤研究(B)
    18. ヒトB細胞のマクロファージへのLineage転換:ホジキンリンパ腫の病態との関連 2005 – 2006 片山 直之 三重大学, 大学院医学系研究科, 教授 (20185812) 基盤研究(C)

まず単変量回帰分析を行ってから次に多変量回帰分析をすることの是非

何かの現象を引き起こす要因を同定するために、候補となる要因を複数リストアップして、多変量回帰分析を行い、どの要因が最も寄与が大きいかを調べるということが良く行われます。その際、多変量回帰分析の前に、個々の要因(独立変数)に関してまず単変量回帰分析を行うという記述を良く見かけます。そのあたりの統計解析の実際的な手順について情報をまとめておきます。

疑問:多変量の前にまず単変量?

多変量解析をするのなら、わざわざ単変量で個別に解析する必要はないのでは?と思ったのですが、同じような疑問を持つ人が多いようです。

ある病気の予後に関して関係があると予想した因子A,B,C,D,E,Fに関して単変量解析をしたら、A,B,Cが有意と考えられた場合、次に多変量解析を行う場合は、A,B,C,D,E,Fのすべての因子で解析して判断すべきでしょうか?それとも関連がありそうなA,B,Cによるモデルで解析するべきでしょうか?(教えて!goo 2009年

上司の発表スライドなどを参考に解析をしております。その中に、単変量解析をしたうえで、そのP値を参考に多変量解析に組み込んで解析しているスライドがあり、そういうものなのかと考えておりました。ただ、ネットで調べますと、それは解析ツールが未発達な時代の方法であり、今は共変量をしぼらず多変量解析に組み込むのが正しいという記述も散見されました。(YAHOO!JAPAN知恵袋2020年)

多変量解析の手順:いきなり多変量はやらない?

多変量解析は、多くの要素の相互関連を分析できますが、最初から多くの要素を一度に分析するわけではありません。下図のように、まずは単変量解析や2変量解析データの特徴を掴んで、それから多変量解析を実施するのが基本です。(多変量解析とは?入門者にも理解しやすい手順や具体的な手法をわかりやすく解説 Udemy 2019年

単変量解析、2変量解析を経て、多変量解析に進みます。多変量解析の結果が思わしくない場合、単変量解析に戻って、再度2変量解析、多変量解析に進むこともあります。(Albert Data Analysis

多変量解析の手順:本当にいきなり多変量はやらないの?

正しい方法は、先行研究の知見や臨床的判断に基づき、被説明変数との関連性が臨床的に示唆される説明変数をできるだけ多く強制投入するやり方です。… 重要な説明変数のデータが入手できない場合、正しいモデルを設定することはできないので、注意が必要です。アウトカムに影響を及ぼしそうな要因に関して、先行研究を含めて予備的な知見がない場合や不足している場合、次善の策として、網羅的に収集されたデータから単変量回帰である程度有意(P<0.10など)な説明変数のみを選択し、多変量回帰分析に強制投入する方法もありです。(第3回 実践!正しい多変量回帰分析 臨床疫学 康永秀生(東京大学) 2018年5月23日 m3.com)

上の説明がしっくり来ました。単変量解析をスキップするのがむしろ正しいようですが、現実的には説明変数の数を絞り込みたいので(サンプル数の数が限られていると、説明変数の数は増やせないので)、単変量解析を事前に行うことはOKとのことのようです。

「なるべく少ない変数:x を投入」が 原則です。  よくある手法としては、まずは単変量解析で独立変数:x 1つ1つの有意差を検定します。  その後、影響があると思われる独立変数:x 数個を多変 量解析に投入します。(医学研究初心者のための やっぱりわかりにくい統計道場 Shingo Hatakeyama 2016)

多変量解析の手順:一番厳格な方法

上の康永秀生氏の説明にもありますが、一番正しい方法は、データを見ずに(=単変量解析をやらずに)いきなり多変量解析を行うことのようです。下のように、新谷歩氏の説明も同様でした。

(6)データを一切見ず,文献や医学的見地を参照し,アウトカムである死亡に対するリスク因子の中からリスクの大きい順に5つ選び出す。

いずれもよく用いられる方法ですが,正解は(6)です。(1)から(5)は,データを用いてP値を一番小さくする方法として知られていますが … 多変量解析における「見過ぎによる出過ぎ」は専門用語では「Overfitting」と呼ばれ,雑誌によっては先ほど示した(1)から(5)の方法を使用しないよう指示している場合もあります2)。(多変量解析―説明変数の選び方(新谷歩)連載2011.10.17 今日から使える医療統計学講座【Lesson6】多変量解析――説明変数の選び方 新谷歩(米国ヴァンダービルト大学准教授・医療統計学))

統計は絶対正しい方法でないとだめということでもないようで、研究領域やジャーナルによって、習慣的にOKとされることがあるようです。

多変量解析の前に単変量解析をやってはいけない

実際にはみなやっているのでOKなのでしょうが、厳格なことを言えば正しくないようです。

The use of bivariable selection (BVS) for selecting variables to be used in multivariable analysis is inappropriate despite its common usage in medical sciences. (Journal of Clinical Epidemiology VOLUME 49, ISSUE 8, P907-916, AUGUST 01, 1996 Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis Guo-Wen Sun Thomas L. Shook Gregory L. Kay)

When they say bivariable they mean what you refer to as univariate. (Danger of univariate analysis before multiple regression StackExchange) 1変量解析のことを2変量解析と呼ぶ流儀もあるようです。独立変数1個、従属変数1個を合わせて2変数ということでしょう。

多変量解析の前に単変量解析をやらずにどうするのか

まず単変量解析をやって多変量解析に使う独立変数を決めるというのは、統計学者はNGと言っているにも関わらず、実際の臨床研究の現場では普通に行われているように思います。しかし、ダメなものはダメなのだとしたら、どうすればよいのでしょうか。

重ロジスティック回帰分析や Cox の比例ハザードモデルによる生存時間解析などの多変量回帰分析において,モデルに入れる説明変数を単一因子解析で選定する方法は,誤った解析結果を導く可能性があることを示した.多変量回帰分析では,モデルに入れる変数を逐次変数選択法を含む適切な手法で選ぶことが必要である.

(査読者の立場から見た医学論文における統計解析の留意点 新潟大学医歯学総合病院医療情報部 赤澤 宏平 日本臨床外科学会雑誌 2019 年 11 月 16 日受付 臨床研究の基礎講座 日本臨床外科学会・日本外科学会共催(第 81 回日本臨床外科学会総会開催時)第 23 回臨床研究セミナー)

単変量を最初にやらずとも、逐次変数選択法という方法があるそうです。これで解決かと思いきや、専門家でも異なる考え方があるようです。

 「ステップワイズ法(逐次選択法)」は、統計ソフトが自動的に説明変数を1個ずつ入れたり出したりして、適合度の良いモデルを選択する方法です。この方法は基本的に使わない方がよいでしょう。ステップワイズ法を使うのは、臨床を知らない統計屋がやることです。 正しい方法は、先行研究の知見や臨床的判断に基づき、被説明変数との関連性が臨床的に示唆される説明変数をできるだけ多く強制投入するやり方です。(第3回 実践!正しい多変量回帰分析 臨床疫学 安永英雄(東京大学) 2018年5月23日 m3.com)

悩ましいですね。数学的に正しいこと、統計学的に正しいことであっても、臨床の現場には適用できないということでしょうか。

「まず単変量解析」はダメ、ステップワイズ法もダメ、じゃあどうしろと?

新谷歩先生のウェブサイトの統計学解説記事がとてもわかりやすく(初学者に優しく)好きなので、自分は新谷先生の書いた教科書は全部買いました。ウェブ記事を読むよりも本を読むほうが、自分は落ち着いて勉強ができるので、そういうタイプの人には書籍をお勧めいたします。で、『みんなの医療統計 多変量解析編』に非常にはっきりと、どうすればいいか、何をしてはいけないかが書いてありました。とても重要なことですし、今だに多くの人がまず単変量解析をして有意差が出た変数を多変量に投入すると、当然のように考えているので、ちょっと紹介させていただきます。

やってはいけない例

  1. 単変量解析を行って有意差が出たもののみを多変量回帰モデルに入れる
  2. ステップワイズ法を使って有意差が出た説明変数だけを多変量回帰モデルに入れる
  3. 単変量解析で有意差が出たもののみをステップワイズ法に入れて、最終的に有意差が出たもののみを説明変数として多変量モデルに入れる

参照 216ページ 新谷歩『みんなの医療統計 多変量解析編』

ではどうするのかというと、

何がアウトカムと因果関係をもつかをデータを見ずに、先行文献や医学的観点から考え、アウトカムとの関連性の上で重要なものか選ぶ。臨床的な判断で決める。

参照 215ページ

ということです。

新谷歩『みんなの医療統計 多変量解析編』(アマゾン)初学者に寄り添う優し解説

 

英語プレゼンテーション・英語論文執筆セミナー・コースワークの外部講師

英語プレゼンテーションや英語論文執筆に関するセミナーやコースワークを委託できる(できそうな)外部講師のメモ。Availabilityに関する最新の情報は、リンク先をご覧ください。

  1. editage 研究者向け 英語論文執筆・英語プレゼンテーション セミナー 講師 David Kipler (デビッド・キプラー)氏
  2. 「遺伝研メソッド」科学英語プレゼンテーションの出前研修