医療統計学」カテゴリーアーカイブ

95%信頼区間とは?やっと理解できた一番わかりやすい説明

統計学の教科書を読んでいて、今までどうも腑に落ちなかったというか、しっくりこなかったことの一つが、「95%信頼区間」です。

区間推定とは真の母数の値θが、ある区間(L,U)に入る確率を1-α以上になるように保証する方法であり、‥

具体的に数値として計算した現実の信頼区間に対して、”1-αの確率でθを含む”ということはない

統計学入門 東京大学教養学部統計学教室編 1991年 東京大学出版会 225ページ

教科書を読んでいて、さっき言ったことと逆のこと言ってない??みたいな説明に惑わされている人は自分以外にもたくさんいるのではないでしょうか・

95%信頼区間とは、何か知りたい値(真の値と呼びましょう)があったとします。血圧の値でもいいし、ある遺伝子の発現量でもいいでしょう。それを知るために「観察」あるいは「観測」をして値を得ます(観測値と呼びましょう)。観測値には誤差がつきものなので、観測は複数回行ってその平均値を求めておくことが多いです。そして、統計学的な計算によって、95%信頼区間を求めます。95%信頼区間は、

(8.3 ~ 11.5)

などとなるわけです(数字はテキトーです)。今問題にしたいのはこの解釈です。

統計学の教科書やネット解説記事で良く見かける注意として、「真の値は95%の確率でこの区間内にある」と解釈するのは間違いですというものがあります。

そうではなく、「真の値が含まれる範囲がこの区間である確率が95%」と解釈するのが正しいのです。

  • 「真の値は95%の確率でこの区間内にある」
  • 「真の値が含まれる範囲がこの区間である確率が95%」

この2つの解釈は日本語の字面だけを見ていると、何が違うの?日本語の意味同じだよね?と思って、いつも混乱させられてきました。今日は、この問題に決着をつけたいと思います。

真の値は未知なのですが、あるきまった値です。信頼区間が(8.3 ~ 11.5) だからといって、真の値(もしくは母平均)が9だったり、10だったり11だったり(観察するたびごとに)変化する可能性はないのです。未知なだけで、もしそれが10なら10です。真の値というものは、観察を繰り返しても絶対に変化しない値です。

因果関係で言えば、真の値は「原因」であり、観測値(信頼区間)は「結果」です。「原因」は最初から決まっているので、原因が変動するという解釈は許されないのです。

それに対して、95%信頼区間は観察ごとに(観測値ごとに)変わり得るものです。観測値は毎回異なるものですし、その観測値に基づいて信頼区間を算出するのですから、信頼区間が毎回観察ごとに変わるのは当たり前です。ただし研究者は通常、観察は一回(測定は複数しても、それら全体を一つの観察と考えた場合)しかしませんので、現実的には、信頼区間は一つしか求めません。信頼区間が多数ありえるというのは、あくまで、観察を仮に何回も繰り返したらという仮定の話です。信頼区間を正しく解釈するためには、この仮定が重要なのです。

ある観察では信頼区間が(8.3 ~ 11.5)と計算されたとしても、もう一度観察をすると観測値が少し変わるでしょうから、得られる平均値も変わり、信頼区間は今度は (7.9 ~ 10.3) と計算されるかもしれません。観察を何回も繰り返すと、真の値はホントウは10なのにも関わらず、95%信頼区間として(6.1 ~ 8.9) などという結果を得るかもしれません。つまり95%信頼区間はあくまで95%信頼できる区間であって、100回観察して信頼区間が100通り得られた場合に、95回くらいは正しいが、残り5回くらいの結果は間違っている可能性があるというわけなのです。(6.1 ~ 8.9) を得てしまった場合は、その間違いの5%のくじを引いてしまったようなものです。

真の値=10.000だったとして、ある観察により95%信頼区間が(6.1 ~ 0.8) だと結論したとします。観測値は毎回ブレるので、このように真の値が実は観測値に基づいて算出した信頼区間に入っていない!なんてことも起こりえるのです。このケースの場合、真の値がこの区間(つまり、6.1から0.8の間)にある確率が95%という解釈が間違いだということを納得して頂けるのではないでしょうか。[6.1 ~ 0.8]という区間はたまたま得られた観測値に基づいた値に過ぎず、その区間自体に大した意味はないので、その区間を基準に真の値がどこにあるかを議論することは意味をなしません。

「真の値が含まれる範囲がこの区間である確率が95%」ということだけのことで、実際は5%の確率で間違っちゃうのですから、ある観察により(ホントウは真の値=10.000であるのにも関わらず)、 (6.1 ~ 0.8)という95%信頼区間を得たとしても、なんら不思議ではないのです。

真の値は未知ではあるがどこかある値で固定されたものなのに対して、95%信頼区間は、観察ごとに得られる数値であって、観察するたびに(観測値ごとに)毎回変わるということが、理解のために必須の大事なポイントですね。

じゃあ、ある観察に基づいて95%信頼区間が与えられました。その区間内に真の値が存在する確率は?と聞かれたら95%という答えになりそうです。さっきと何も違わないじゃないか?ということで、堂々巡りです。

本質的な違いは一体何なのでしょうか???

真の値は、ある区間がひとつ与えられたときにその区間に沿って(もしくはその区間の内外を)動くわけではない、動きながらこの辺である確率はこうみたいなことにはならないというのが論点なのでしょう。(観察のたびに)動くのは区間の方なのです。

結局何が間違いなのかというと、区間が与えられてそれが固定した状態で「真の値」が動く、つまり確率的にいろいろな値を取ると考えたり解釈するとしたらそれは間違いですよということだと思います。

これで決着がついたのかというと、そうでもありません。決着をつける準備が整ったのです。既に定まっていることの確率を考えるのはおかしいというのが、ここまでの議論でした。ところが、世の中にはベイズの定理というものに基づいた「事後確率」という概念が存在します。複数の原因があったときに、今得られた結果から、原因が何だったのかを推定しましょうというものです。ベイズの考え方では、既に起きてしまっていること(原因)をあたかも確率変数のように捉えて、事後で得られた情報をもとに原因を推定することをよしとしています。これこそまさに、95%信頼区間の「誤まった解釈」そのものでしょう。真の値はすでに決まっているとはいえ、現実問題としてその値を知らないわけだから、それを確率変数(すなわちいろいろな値を取りえるもの)とて考えて何が悪い!というわけですね。

伝統的頻度論での真値は点であり、信頼区間は「範囲内に真の値を含む確率」として理解されるが、ベイズ統計学では真値は確率分布し信用区間は「真の値が存在する確率範囲」として理解される。 頻度主義統計学でしばしば間違いであると指摘される、「□□の値が a から b の間に入る確率は○%である」との言い方は、ベイズ統計学においては正しい。(信用区間 ウィキペディア)

  1. 信頼区間を正しく理解してますか?確信区間との違いって何ですか? 2017年08月13日 @katsu1110 Qiita
  2. ベイズ信用区間(Credible Interval)とは何ですか? 2020.04.28/2020.05.08 猫薬プロジェクト3rd〜ある薬剤師の備忘録〜

さきほどこの記事の上のほうで、

因果関係で言えば、真の値は「原因」であり、観測値(信頼区間)は「結果」です。「原因」は最初から決まっているので、原因が変動するという解釈は許されないのです。

と書きましたが、ベイズ流の考えかたでは、まさにこの「原因」が確率的に決まると考えるわけですね。だからこそ、ベイズ流の考え方は異端としてなかなか受け入れられなかったのです。当然、従来の統計学の考え方に則れば、受け入れられません。

現在、IT やリスクマネジメント、経済学、意志決定理論の各分野で非常に 重要な役割を果たしているベイズ統計。しかし、その250 年あまりの歴史の ほとんどにおいて、統計学界では異端視され、冷遇されてきた。 それはなぜなのか? またそれにもかかわらず、死に絶えることなく生き残り、 現在、広く利用されているのはなぜなのか? 今まで語られることのなかったベイズ統計の数奇な遍歴。

異端の統計学 ベイズ 単行本 – 2013/10/23 シャロン・バーチュ マグレイン (著), Sharon Bertsch McGrayne 書籍紹介ページより

結局、ベイズ的な立場でものを話すか、そうでないかで変わるということのようです。基本的に多くの研究論文で使われる統計学(とくに臨床系の論文)は、ベイズ統計の考えではなく従来の統計学の考え方でデータ処理をしているのが普通だと思います。なので、真の値を確率変数と考えるという考え方は、間違いと言わざるを得ないんでしょう。立場が違うと、正しいか間違いかの議論すらできなくなるのですね。95%信頼区間の解釈をなぜ多くの人が”間違う”のかというと、普通の人にはベイズ的な考えかたが意識せずとも普通に受け入れられているからなのだと思います。

もうこうなると何が間違いで何が間違いでないのかがわかりにくくなりますが、態度を先に決めないといけないのです。科学的態度は唯一無二だという前提があるから、議論がかみ合わないのでしょう。

 

統計学の教科書にどんな説明があるか見てみます。

区間推定とは真の母数の値θが、ある区間(L,U)に入る確率を1-α(αはθが区間に入らない確率)以上になるように保証する方法であり、

P(L≦θ≦U)≥1-α

となる確率変数L,Uを求めるものである。

同一の母集団から抽出した標本でも、標本ごとに信頼区間の推定値は変化する。θは未知ではあるが決まった定数である。したがって、一つの標本から信頼区間を具体的な数値として推定してやれば、これは信頼区間に含まれる含まれないかのいずれかしかない。すなわち、具体的に数値として計算した現実の信頼区間に対して、”1-αの確率でθを含む”ということはない。信頼区間の意味は、繰り返し多くの異なった標本について信頼区間をここで述べた方法によって何回も計算した場合、θを区間内に含むものの割合が1-αとなるということである。

(統計学入門 東京大学教養学部統計学教室編 1991年 東京大学出版会 255ページ)

上の説明を読むと自分の解釈ですが、母集団の定数はあるきまった値(例えば平均値)であって、それを確率変数であるかのように捉えて議論してはいけないということなのかなと思います。

母集団の定数が固定された状態で、95%信頼区間の上限と下限が動くのであって、それを逆にして、信頼区間の上限と下限を固定して母集団の定数を確率変数のように捉える考え方は違いますよということでしょう。

こうした区間の設定はX平均をたとえば100回観測し、そのつど上述の区間を作った場合に95回程度は母数μの真の値を覆うという信頼度をもっていることになる。

(統計入門 中村隆英 ほか 1984年 東京大学出版会 195ページ)

コインをN枚投げてx枚が表になった場合、

このxとμ=N/2、σ=√N /2 から、z=x-μ /σ と計算したzが、

不等式-1.96≦z≦+1.96を満たす確率は0.95です。

つまり、xを観測し、そのxからzを計算してNを棄却していく作業をした場合、本当の正しい枚数Nが生き残る確率は、おのおのの観測値xに対して、どれも0.95にとなるわけです。したがってどのような観測値xが出た場合でもこの方法でNを推定していく手続きを繰り返すなら、そのうち95パーセントの推定結果は当たっているというのが正しい解釈なのです。

95パーセントというのは、「区間13≦N≦30に、本当のNとしてありうるものの95パーセントが入る」という見積ではなく、「区間推定という手続きを実行し続けるなら、観測値に対応してさまざまな区間が求まるが、その100回のうち95回は本当のNが求めた区間に入る」そういう見積もりになる、そういうパーセントなのです。

(小島寛之 完全独習 統計学入門 ダイヤモンド社 103ページ)

上の『完全独習 統計学入門』の説明が一番詳細で突っ込んだ表現のように思います。「確率」というと混乱しますが、”Nとしてありうるものの95パーセント”ではないと説明されていますので、これはまさにNは確率変数ではないということでしょう。このことはこの本の前のページ(102ページ)にも説明がありました。

「表の枚数が10枚と観測されたとき、母数Nが95パーセントの確率でこの13≦N≦30の範囲に入っている」という意味ではないのです。

そもそもNは、「不確実にこれから決まるもの」ではなく、「すでに確定しているのだが、知らないもの」なのです。「Nが異なれば母集団は異なる」わけです。

私たちの扱っている不確実現象とは、「固定された母集団からどのデータが観測されるか」というものでした。このとき決まった一定の仕組みで確率的に数値が出るのは、母数Nではなく、あくまで観測される数値のほうなのです。

(小島寛之 完全独習 統計学入門 2006年 ダイヤモンド社 102ページ)

母数Nが95パーセントの確率で13≦N≦30の範囲に入ると解釈することが間違いだといった場合、その意味するところは、母数Nが確率変数でありその(いろいろな値を取り得る確率変数Nのうちの)95パーセントが13≦N≦30の範囲に入っていると解釈するのであればその解釈は間違いだということのようです。

すでに確定しているけど未知のものを確率の対象として考えること自体は、一般的に別に問題ないのだと思います。だからこそ自分は何年も混乱したままだったのでした。問題視されているのは、「区間を決めてから母数の真の値を確率変数として取り扱うこと」およびそういう態度から出てきた発言なのでしょう。

区間推定はある確率(信頼度1-α)をもって、推定を区間で示す方法である。

(基礎医学統計学改訂第6版 2011年 南江堂 83ページ)

上の説明の意味は、「95%の確率でその推定が正しい」ということです。「95%の確率でその区間内に問題としている母数が存在する(つまり、その前提として、母数は区間内外のいろいろな値を取り得る確率変数である。つまり、その確率変数(さまざまな値がありえる)はその区間内に95%存在し、その区間外に5%存在する)」という意味にとってはいけないということが、今ならわかります。母数は、一つしかないので区間内に存在するか、しないかでしかないわけですね。確率的に決まる、さまざまな値を取り得る変数だという扱いをしてはいけないわけです。

結局、混乱を引き起こしていた元凶は日本語の意味するところの曖昧さ、多義性なのだと思います。

「母数が95%の確率で区間内に存在する」という日本語には2つの解釈があり得て、

(1)(母数は一つしか存在しない値だが)そういう推定が正しい確率が95%(母集団をまず決め、観測を行い、推定を行った)

(2)(母数は確率変数であり)区間内で見つかる確率が95%(区間をまず決め、母数を変数であるかのように扱おうとしている)

という解釈の(2)は間違いで(1)は間違いではないということなのでしょう。

また、それ以前の話として、原因となるもの、真の値、母集団の統計値を確率変数のように考えて事後確率を計算する立場に身を置いているか、そうでないかが根本的な違いとして存在していました。

 

95%信頼区間の説明が腑に落ちるまで、一体何年(何十年?)かかったんだろう、自分。。わかりやすい説明(=そう説明してもらえれば自分でも理解できるという説明(『完全独習 統計学入門』))に出会うのに何十年もかかってしまった。もしくは、真剣に考える時間をとろうと決心するのに、それだけの時間がかかってしまっただけなのかもしれません。

区間推定とは真の母数の値θが、ある区間(L,U)に入る確率を1-α以上になるように保証する方法であり、‥

なお、同一の母集団から抽出した標本でも、標本ごとに信頼区間の推定値は変化する。θは未知ではあるが決まった定数である。したがって、一つの標本から信頼区間を具体的な数値として推定してやれば、これは信頼区間に含まれるか含まれないかのいずれかしかない。すなわち、具体的に数値として計算した現実の信頼区間に対して、”1-αの確率でθを含む”ということはない。信頼区間の意味は、繰り返し多くの異なった標本について信頼区間をここで述べた方法によって何回も計算した場合θを区間内に含むものの割合が1-αとなるということである。

統計学入門 東京大学教養学部統計学教室編 1991年 東京大学出版会 225ページ

あらためて統計学の教科書を読み直すと、なんだ、ちゃんと書いてあるじゃんと思えました。

きちんと書かれた教科書(しかしどの教科書がそうかは、勉強中の人間には判断がつかない!)をじっくり読み込み、読み返すことも大事ですが、もっとわかりやすい説明をしてくれる教科書を他で探すのもまた良い戦略です。

参考

95パーセント信頼区間とは、さまざまな観測値から同じ方法で区間推定をすると、そのうちの95パーセントは正しい母数を含んでいる、そういう区間のことである。

小島寛之 『完全独習 統計学』ダイヤモンド社 106ページ

『完全独習 統計学』は、今までの統計のモヤモヤを解消してくれる素晴らしい本だと思いました。下の説明は、自分にはあまりわかりやすくありません。”95%の試験結果が収まる”って何?って思いました。どんな説明が一番わかりやすいと思えるかは、人それぞれです。自分にとってのベストの説明を探すしかありません。もしくは自分で考え抜いて、腑に落ちるところまで妥協しないか。

。「95%信頼区間」は、同じ試験を繰り返したときの結果の範囲のうち、95%の試験結果が収まる範囲のことである(区間推定)。

医療情報をわかりやすく発信するプロジェクト理解しにくい医学研究用語有意差、95%信頼区間

因子分析(要因分析)とは

 

因子分析とは

因子分析(要因分析とも呼ばれる)とはどんな分析手段なのでしょうか?因子分析とは、複数の観測値(例えば、国語のテストの点数、算数のテストの点数、理科のテストの点数、他の教科いろいろ)があったときに、これらの教科数よりももっと少ない種類の一般的な能力(例えば、言語能力、数理的能力)の存在を仮定して、それらの組み合わせ(線形結合)および、一般的な能力では説明がつかない個々の教科特有の能力との和とするモデルを考える分析手法です。

  1. 要因分析(コトバンク)
  2. 永田靖・棟近雅彦『多変量解析法入門』13.3因子分析pp197-205

因子分析と主成分分析との違い

  1. 主成分分析は因子分析ではない! 狩野裕 大阪大学大学院人間科学研究科 主成分分析(PrincipalCompotent Analysis; PCA) と因子分析(Factor Analysis; FA) との論争の歴史は長い.例えば,多変量実験心理学会の機関紙であるMultivariate Behavioral Research が 1989 年に特集を組んでおり ‥ PCAとFAは因果の方向が逆だという明確な違いが存在する
  2. 主成分分析とは? R を使った分析例や因子分析との違いを解説 Quest 主成分分析はデータの情報量を削減してデータの特徴を可視化したり要約したりするのに使われます。対して因子分析では複数のデータからその背後にある潜在的要素を発見するのに使われます
  3. 因子分析 mLAB 主成分分析は観測された変数を合成することが目的であるのに対し, 因子分析は観測された変数そのものが 潜在変数(因子) の合成であるとみなします.(説明の図がわかりなすい)
  4. 主成分分析と因子分析との比較 (SD法による庭景観写真の評価) u-tokyo.ac.jp 主成分分析は,「対象」のもつ変動を少数の次元で説明することを目的としている. つまり,「対象」の実現値を できるだけ少数の変数で近似することが目的である.‥ 因子分析は「変量」の構造をモデル化し,データがそのモデルに適合しているか といったことに関心がある.
  5. 心理データ解析 補足説明(1) 因子分析をする目的は「共通因子を見つけること」 主成分分析の目的は「情報を縮約すること」
  6. 因子分析(アイスタット)主成分分析の潜在変数は、一つは総合力があり、それ以外の潜在変数は相反する概念のもの、例えば、文系能力と理系能力、お笑い系能力とアイドル系能力など、となります。これに対し因子分析の潜在変数は、総合力が存在しません。そして潜在変数一つ一つが一つの概念、例えば、1番目潜在変数は文系能力、2番目潜在変数は理系能力を現します。

主成分分析と因子分析に纏わる間違い

  1. 主成分分析 -因子分析との比較- 2013.7.10. 心理データ解析演習 M1 枡田 恵 SPSSでは、因子分析のデフォルトが「主成分分析」になっているために、因子分析をするつもりが、誤って主成分分析を行ってしまうケースがある

pythonで行う主成分分析と因子分析

  1. 主成分分析と因子分析について juki juki 2020年10月26日 16:49 note.com

因子分析の創始者

因子分析は心理学の分野で多用されていますが、それは人間の能力やパーソナリティをできるでけ少ない数の基本要素によって説明したいという要請があるせいです。C. Spearmanが、心理学の研究で人間の知能を定量的に表すために使ったのが最初だそう。

  1. “General Intelligence,” Objectively Determined and Measured Author(s): C. Spearman Source: The American Journal of Psychology , Apr., 1904, Vol. 15, No. 2 (Apr., 1904), pp. 201-292 Published by: University of Illinois Press
  2. Two-factor theory of intelligence (Wikipedia)

参考

  1. 探索的因子分析と主成分分析との使い分け   奥 喜正

HALBAUによる多変量解析の実践 現代数学社

HALBAUによる多変量解析の実践

『HALBAUによる多変量解析の実践』現代数学社1995年1月25日

HALBAUという統計ソフトは現代数学社から(当時?)売れているものだそう。愛称「ハル坊」は、NECのPC9801で走る統計プログラムパッケージで、High-quality Analysis Libraries for Business and Academic Users)とのこと。PC9801っていつの時代だよ?って思います。HALBAUによる という書籍タイトルですが、別にHALBAUを使う必要はいまどきありません。本の中身は具体例が多くて、興味深いものです。編著者の名前でこの本に辿り着いたのですが、期待を裏切らないいい教科書だと思いました。理屈の部分が結構数式できっちり説明されています。

アマゾンで1円で売られていますが、HALBAUの部分を除いて考えても、とてもよい、コンパクトにまとまった多変量解析の教科書なので、お買い得かも。

『多変量解析の展開 隠れた構造と因果を推定推理する』(統計科学のフロンティア5 岩波書店 2002年12月10日)

『多変量解析の展開 隠れた構造と因果を推定推理する』(統計科学のフロンティア5 岩波書店 2002年12月10日)

図書館で借りました。

共著ですが各チャプターの著者がその領域の第一人者ばかりで、それだけでも刺激的な本であることがわかります。

目次

第I部 独立成分分析とその周辺 甘利俊一

1 信号の混合と分離独立成分分析の枠組み 2 問題の定式化 3 独立成分分析,主成分分析,因子分析 4 確率変数の従属性コスト関数 5 最急降下学習法 6 自然勾配学習法 7 独立成分分析における最急降下学習 8 推定関数と学習アルゴリズム 9 独立成分の逐次的抽出 10 信号の時間相関を利用する方法 11 時間的な混合とデコンボリューション 12 画像の分解と独立成分解析 参考文献

第II部 構造方程式モデリング,因果推論,そして非正規性 狩野裕

1 因果推論何が問題か 2 検証的因果推論パス解析 3 探索的因果推論共分散選択 4 構造方程式モデリング 5 因果の大きさを正確に測定する 6 因果の方向を同定する 7 回帰分析の役割 8 非正規性の問題 9 構造方程式モデリングの役割まとめに代えて 参考文献

第III部 疫学・臨床研究における因果推論 佐藤俊哉・松山裕

1 因果を探る 2 因果モデル 3 因果グラフ 4 因果パラメータの推定 5 因果は巡る 参考文献

補論A 分布の非正規性の利用 竹内啓

補論B 多次元AR モデルと因果関係 石黒真木夫

マンホイットニーのU検定とウィルコクソンの順位和検定とウィルコクソンの符号順位検定の違い

マンホイットニーのU検定とウィルコクソンの順位和検定とウィルコクソンの符号順位検定は、名前が似ていたり、内容が似ていたりして、普段t検定ばかりつかっていると、すぐに何がなんだったのかを忘れてしまいます。

パラメトリック検定であるt検定(つまり2群間の比較)で対応が無い場合に対応するノンパラメトリック版が、マンホイットニーのU検定およびそれと全く同値であるウィルコクソンの順位和検定です。マンホイットニーのU検定とウィルコクソンの順位和検定はやっていることが同一(同値)なので、どちらを使っても構いません。対応がある場合のt検定のノンパラメトリック版が、ウィルコクソンの符号順位検定です。「対応がある」のですから、比べたい2群のそれぞれのデータ数はもちろん同じでなくてはなりません。それに対して、マンホイットニーのU検定やウィルコクソンの順位和検定では、比べたい2群のそれぞれのデータ数(サンプル数)は異なっていても構いません。

参考図書

  1. 狩野克己、高橋秀人『基礎 医学統計学 改訂第6版』 この本がスッキリとした説明でなおかつ、計算式および簡単な実例を解説しているので、検定の中身がブラックボックスにならず、自分で何をやっているのかが自分で納得できるというメリットがあります。厳密な理論は理解したいとまでは思わないけど、検定で何をやっているのか計算式くらいは知っておきたいというスタンスの人に丁度手頃な教科書。きわめて整然と多数の手法がまとめられているので、自分の頭の中をスッキリと整理するのに役立つ本。2019年に第7版が出ています。フォントが変わったりして見やすくなったが、内容に変更はないようです。統計学の勉強のための最初の一冊としても申し分ないし、日常的に使うためのリファレンスとしても良い本なので、是非手元に置いておきたい本です。

ピアソンの相関係数の意味、求め方、解釈の仕方、ありがちな間違い

ピアソンの相関係数とは:定義

ピアソンの相関係数とは、わかりやすく言うと、2つの量にどの程度の相関があるかを表す指標です。正式名称は、ピアソンの積率相関係数と言います。

相関係数って何?と思って統計の教科書を開いたときに、相関係数の定義が載っているわけですが、教科書によって大きく分けて2つの説明があります。一つは、確率変数X,Yに関する相関の定義。もう一つは、実際に観察されたデータの変数X,Yに関する相関の定義です。この区別を頭の中でできていない状態で教科書を見ると、本によって書いてあることが違うような気がして頭が混乱します。

例えば稲垣宣生『数理統計学』のような数学的な内容の教科書だと、確率変数X,Yを基準化したものの共分散を相関係数と呼ぶと説明しています。他方、豊川・柳井(編著)『医学・保健学の例題による 統計学』の相関係数の説明を読むと(51ページ)、データ(xi, yi)に関して相関係数の計算式を紹介しています。

ウィキペディアの説明も注意深く読むと2つの状況に関して書いてあります。

相関係数(そうかんけいすう、英: correlation coefficient)とは、2つのデータまたは確率変数の間にある線形な関係の強弱を測る指標である。(ウィキペディア

日本統計学会(編)『統計学実践ワークブック』の相関係数の説明を読むと、確率変数X,Yに関する説明がありますが、そのあとで実際のデータに関する言及の前に補足的な説明がちゃんとされていました。

データの特性値 これまで紹介してきた特性値は分布(母集団)に関する特性値である。実際に観測されたデータに対する特性値もほぼ同様に計算される。(日本統計学会(編)『統計学実践ワークブック』 17ページ)

自分のような初学者はこんな、そもそも今何について考えているのか、といった当たり前すぎることで混乱し躓いたりするのですが、日本統計学会(編)『統計学実践ワークブック』はコンパクトなわりに、よくよく読むと結構親切に書かれていることがわかります。

ピアソンの相関係数を使ってはいけない例

ピアソンの相関係数は、2つの変数XとYのデータにどれくらいの直線的な関係があるかを示すものです。そもそもYとXとの間に直線関係が無い場合は、いくらXとYとが密接に関連していたとしても、ピアソンの相関係数は1に近くはなりません。もともと直線性が仮定できないようなデータX,Yに対してピアソンの相関係数を計算することはナンセンスです。そのため、ピアソンの相関係数を求めるまえにまずXとYの散布図を描画してみて、線形性があるかどうかを見ておくことが大事です。

  1. データの関係性を表せる「相関係数」と2つの落とし穴
  2. 相関係数について相関係数の注意点

ピアソンの相関係数の求め方と計算式

XとYという2つの変数(データ)がn個ずつあったとき、ピアソンの積率相関係数は、

ピアソンの積率相関係数 = XとYの共分散 / Xの標準偏差とYの標準偏差との積

という数式で求められます。

  1. ピアソンの積率相関係数 ウェブリオ辞書
  2. ピアソンの積率相関係数 Pearson product-moment correlation coefficient BellCurb統計用語集

ピアソンの相関係数の意味

定義式からわかるように、ピアソンの相関係数はXとYが完全に相関しているとき、すなわち直線関係にあるときに1になり、まったく相関がないときに0になります。XとYが逆相関しているときは-1を取ります。-1から1までの間の数をとることになります。

ピアソンの相関係数のp値とは

相関係数が0でないかどうかを調べるために検定が行われます。p値が小さいから相関が強いと解釈するのは間違いです。相関の強さは相関係数が1に近いかどうかです。

SPSSによるピアソンの相関係数の求め方

Rを用いたピアソンの相関係数の求め方

ピアソンの相関係数とスピアマンの相関係数との違いと使い分け方

Pearson の相関係数には、対称的な量的変数を使用し、Spearman のローおよび Kendall のタウ bには、量的変数または順序付けされたカテゴリー変数を使用します。(2 変量の相関分析 SPSS Statistics 27.0.0 IBM)

  1. データ尺度の違いによる相関関係を数値化する方法の種類
  2. ピアソンの相関の方法とスピアマンの相関の方法の比較 menu Minitab® 18サポート

ピアソンの相関係数を英語でいうと

ピアソンの相関係数は英語で、Pearson’s Correlation Coefficient (PCC)あるいはPearson’s Product-Moment Correlation Coefficient (PPMCC)あるいはPearson’s rなどと言われるようです。

参考

  1. 標準偏差の名付け親は,相関係数で有名なピアソン,不偏標準偏差の話題と共に

 

ChatGPTに聞くピアソンの相関係数の説明

ピアソンの相関係数(Pearson’s correlation coefficient)は、2つの連続変数の間の線形な関係を測定する統計的指標です。この係数は、変数間の相関がどれだけ強いかを示し、その方向(正の相関または負の相関)も示します。ピアソンの相関係数は、-1から1の範囲で値をとります。

  • 1に近い場合:完全な負の線形関係があることを示します。1つの変数が増加すると、もう一方の変数は減少します。
  • 1に近い場合:完全な正の線形関係があることを示します。1つの変数が増加すると、もう一方の変数も増加します。
  • 0に近い場合:相関がほとんどないことを示し、変数間には線形関係がほとんど存在しないか、非線形の関係がある可能性があります。

臨床研究の例を通じてピアソンの相関係数を説明しましょう。

臨床研究の例: 体重と血圧の関係

研究の背景: 研究者は、患者の体重と血圧の関係を調査し、これらの変数の相関を明らかにしようとしています。血圧が高い人々は、通常、体重が増加しているのか、それとも相関は存在しないのかを調べる必要があります。

データ収集: 100人の患者から、各人の体重(kg)と収縮期血圧(mmHg)のデータが収集されました。

データ解析: これらのデータを使用して、ピアソンの相関係数を計算します。相関係数が正であれば、体重と収縮期血圧が一緒に増加する傾向があり、相関が強いほど、その関係が強いことを示します。負の相関係数は、一方の変数が増加すると他方が減少することを示し、相関が強いほどその関係が強いことを示します。

結果: ピアソンの相関係数を計算した結果、体重と収縮期血圧の間に正の相関があることが示されました。相関係数が+0.65であるため、体重が増加すると、収縮期血圧も増加する傾向があります。この情報は、臨床医や研究者にとって、体重が高血圧に対するリスク要因である可能性を示唆しています。

このように、ピアソンの相関係数は2つの変数の関係を定量化し、臨床研究において異なる変数間の相関を評価するために広く使用されます。

(参照:chat.openai.com)

重回帰分析の実際的な手順  

重回帰分析はSPSSでやると一瞬ですが、高価なソフトウェアがなくても無料のpythonやRを使って分析することも比較的簡単にできるようです。実際的な手順を解説したサイトを纏めておきます。

得られた予測式の係数の解釈について:注意点など

  • 回帰係数にはデータ単位があり、目的変数のデータ単位と同じ
  • 回帰係数から『説明変数の目的変数に対する貢献度』がわかります。
  • データ単位が変われば係数の値も変わることを理解してください。したがって、関係式の回帰係数を比較し、値が大きい説明変数ほど目的変数に貢献しているとか重要であるいうことはいえません。重回帰分析では、回帰係数とは別の統計量「標準回帰係数」を算出し、この値を使って売上を予測するのに重要な説明変数のランキング(順番)を把握します。

引用元:多変量解析の手法別解説>重回帰分析(2/3) アイスタット

 

  • 特に注意しないといけない点は,回帰分析は決して因果関係を表しているわけではないということです.従属変数を独立変数で「予測」するのが回帰分析というと,いかにも「独立変数⇒従属変数」という矢印つきの因果関係を想定しがちですが,決して因果関係と断定はできません.あくまで回帰係数は相関関係です.例えば単回帰分析の場合,独立変数と従属変数を入れ替えても,標準化された回帰係数は全く変わらず,しかもその値は普通の単相関係数なのです.
  • 「従属変数の予測力」と「具体的にどの独立変数が従属変数にどのような形で効いているかを理解できること」ということは別問題です.後述するように,偏回帰係数の解釈は独立変数の数が増えるほど困難になります.社会学のように,とにかく社会事象の予測の精度を目的にする場合では,独立変数を増やしてその予測力を高めることには一定の意味があると思いますが,例えば教育心理学研究のように独立変数と従属変数の具体的な関係を吟味し,そのメカニズムを解明したり独立変数を操作して介入に生かしていこうという場合には,多くの独立変数を投入した重回帰分析は結果の解釈が困難で,実質的に無意味になることが多いです.

(重回帰分析について 1.単回帰・重回帰分析における基本的な注意点 koumurayama.com)

  1. 決定係数や標準化偏回帰係数が高いと「影響力が強い」といえるのか?ryotamugiyama.com/
  2. 重回帰分析とは?(手法解析から注意点まで)surveroid.jp

重回帰分析により、従属変数をうまく表現する予測モデル(式)が得られますが、その式に現れる係数(回帰係数や標準化回帰係数)は、予測モデルにおける貢献の度合い、影響の大きさを表しているにすぎず、「原因としての大きさ」と無考えに解釈していいわけではないようです。所詮、単なる数式なので、何を独立変数として、何を従属変数とするかに関しても、別に数学的には制約はないわけで、独立変数を従属変数を入れ替えても(つまり、原因と思っていたことと、結果と思っていたことを入れ替えても)重回帰分析はできてしまうことを考えれば、重回帰分析は因果関係を直ちに教えてくれるものでは決してないということが理解できます。

 

変数の正規化について

偏回帰係数は、どの説明変数がどの程度目的変数に影響を与えているかを直接的には表していません。身長を(cm)で計算した場合と(m)で計算した場合とでは全く影響度の値が異なってしまうことからも明らかです。各変数を平均 0,分散 1 に標準化して求めた「標準偏回帰係数」を用いれば、各説明変数のばらつきの違いによる影響を除去されるので、影響度が算出されます。(重回帰分析とは albert2005.co.jp)

購入額の予測値=5,000+30×(年齢)+300×(性別)+450×(家族人数)+0.001×(年収)

この関係式において、説明変数(属性)が、購入額(目的変数)に対しておよぼす影響の大きさを知りたいということがよくあります。上の関係式では、年齢や年収は単位が違います。したがって年齢の項の偏回帰係数30と年収の項の偏回帰係数0.001は直接比較できません。そこで、あらかじめ説明変数を平均0、分散1に標準化()しておくと、単位が同一の条件下で分析できます。(回帰分析のモデルと基本式 macromill.com)

ダミー変数について

一般線形モデルでは,質的な独立変数(つまり,分散分析の要因)を,(水準数-1)個のダミー変数を使って表す。ダミー変数とは,ある水準に属していることを1で表し,属していないことを0で表す変数のことである。‥ このような(水準数-1)個のダミー変数を独立変数として重回帰分析を行うと,重回帰モデルの有意性検定の自由度,F値,p値が,対応のない1要因分散分析と同じ値になる。回帰式を最小二乗法で推定すれば,予測値は各水準の母平均の最小二乗推定値となる。詳しくは南風原(₂₀₀₂)のpp. ₂₁₆-₂₁₉,₂₇₅-₂₇₆を参照されたい。(統計モデルの違いを理解する 一般線形モデル・一般化線形モデル・階層線形モデル・階層的重回帰モデル The Annual Report of Educational Psychology in Japan₂₀₁₈, Vol. ₅₇, 302-308 PDF

  1. 第7章 ダミー変数 osaka-u.ac.jp

 

pythonを用いた重回帰分析

pandasとscikit-learnを使うと、SPSSでできることがpythonでもあっさりとできるようです。下記のウェブサイトを参考に自分のデータで計算してみたところ、pythonでもSPSSでも同じような結果が得られました。

  1. Pythonで基礎から機械学習 「重回帰分析」 @karaage0703 デフォルトは以下のようです。ややこし過ぎですね。 scikit-learn: 分散  pandas: 不偏分散  numpy: 分散  R言語: 不偏分散 ‥ このように、偏差回帰係数と標準化偏差回帰係数は簡単に変換できるので、正規化しないで重回帰分析をして偏回帰係数を求め、後から必要に応じて標準化偏回帰係数を求める方が計算上は楽です。
  2. 重回帰分析の概要とpython 実装 実践ケモインフォマティクス
  3. scikit-learn で線形回帰 (単回帰分析・重回帰分析) pythondatascience.plavox.info 各変数がどの程度目的変数に影響しているかを確認するには、各変数を正規化 (標準化) し、平均 = 0, 標準偏差 = 1 になるように変換した上で、重回帰分析を行うと偏回帰係数の大小で比較することができるようになります。

 

Rを用いた重回帰分析

  1. 18. 重回帰分析 1 (単回帰と重回帰)takushoku-u.ac.jp

 

論文出版の際のまとめ方

  1. 3.結果のまとめと解釈 rikkyo.ac.jp 分析結果は、学術論文では以下のような形式のにまとめる。図の方が一般向けには分かりやすい。各説明変数の偏回帰係数有意か、モデル全体の説明力はどうか、なぜそのような結果が出たのかなどについて検討し、結果の解釈や考察を行うこと。

 

参考

  1. 12 重回帰分析の使用上の注意 kwansei.ac.jp
  2. 回帰分析を理解しよう!-回帰分析の由来と概念、そして分析結果の評価について- 生活研究部 主任研究員・ヘルスケアリサーチセンター・ジェロントロジー推進室兼任 金 明中 ニッセイ基礎研究所

重回帰分析の結果を解釈する際の注意点、よくある誤り・間違い

SPSSなどの統計ソフトを用いると重回帰分析を行うこと自体は非常に簡単です。エクセルで独立変数や従属変数をまとめておいて、SPSSでそのエクセルファイルを読み込み、どの列が従属変数でどの列が独立変数かを選べば、ワンクリック、一瞬で分析が終わります。しかし難しいのは、結果の解釈です。

  1. 多変量解析の手法別解説 > 重回帰分析 アイスタット

予測」は,重回帰分析の目的の一つであり,そこでの変量間の関係は回帰関係である.ただし,それが因果関係となるかどうかには注意深い考察が必要となる.得られた回帰式y=a+bxにおいて,b >0のとき『xが1単位大きければyが平均的にbだけ大きい』という解釈は妥当であるが,それは『xを1単位大きくすればyは平均的にbだけ大きくなる』ことを一般に意味しない.その解釈が成立するためには因果関係が必要となる (統計的因果推論の視点による重回帰分析 岩崎 学 日本統計学会誌第50巻,第2号, 2021年3月 363頁ー379頁

偏回帰係数とは:解釈する際の注意点 

他の独立変数を一定にした上で,x1を動かしてみたらyがどう変わるか」という,x1からyへの直接的な効果を示しているのが偏回帰係数です.(重回帰分析について 1.単回帰・重回帰分析における基本的な注意点 koumurayama.com)

(標準)偏回帰係数は,「他の独立変数から当該の独立変数を予測する回帰分析における残差」と「従属変数(ないし,他の独立変数から従属変数を予測する回帰分析における残差)」の関係を示すものであり,「当該の独立変数そのもの」と「従属変数」の関係を示しているものではない。すなわち,偏回帰係数は,当該の独立変数を「他の独立変数から説明される成分」と「説明されない(他の独立変数とは無相関であるために,一般に『独自なものである』という言葉で表現されている)残りの成分」に直交分解したときの後者の成分の従属変数との関係を示すものであり,後者の成分に関する値は,「他の独立変数の値を一定に統制したときの当該の独立変数の値」と言えるものであるとともに,「各対象の当該の独立変数の値が『他の独立変数の値のわりに』どの程度大きいか,または,小さいか」ということを意味しているものである(ただし,これは「変数間の関係が線形であるとともに,独立変数同士の交互作用効果が存在していない」という前提のもとでのことである)。(心理学的研究における重回帰分析の適用に関わる諸問題 心理学研究2021年

重回帰分析における多重共線性の問題

多重共線性に注意するために、回帰分析を行う際には、まず説明変数間の相関行列を見て、相関がとても強いものがあれば、片方は説明変数から除く、といったことが必要である。(分析実習資料2015/6SPSSによる重回帰分析村瀬洋一)

  1. 多変量解析の前に相関行列を見よう 2019年3月21日 投稿者: ADMIN muscle-hypertrophy.com 「分析」→「相関」→「2変量…」を選択

因果関係について

重回帰分析では、従属変数を独立変数を含む数式で表すので、あたかもそこに因果関係があるかのように感じる人もいると思います。しかし、この数式の意味するところは、あくまで、従属変数がこの数式によってうまく表現できるというだけのことです。因果関係を示すものではありません。

  1. 心理データ解析 第6回(1) 多変量解析とは 「因果関係がある」というためには少なくとも以下の3点を満たす必要がある 1独立変数(説明変数)が従属変数(基準変数)よりも時間的に先行していること 2理論的な観点からも因果の関係に必然性と整合性があること 3他の変数の影響をのぞいても,2つの変数の間に共変関係があること

参考

  1. 重回帰分析 日経リサーチ 重回帰分析の結果を得たら、そのまま鵜呑みにして直ちに結果の解釈をするのではなく、重回帰モデルが適切か否かを、まず評価する。統計ソフトウエアには以下のような評価指標も出力される。
  2. 人事データ活用入門 第4回 因果関係を分析する一手法「回帰分析」とは リクルートマネージメントソリューションズ
  3. SPSSで回帰分析を実施する方法!結果が有意でない場合の解釈は いちばんやさしい、医療統計
  4. 読めば納得。重回帰分析で失敗しがちな事例10|マーケティングと重回帰分析 − その3 ADVA MAGELLAN 2021年3月23日
  5. アパートの家賃(2)ダミー変数を用いた重回帰分析 cuc.ac.jp

 

医療統計ソフトSPSSの使い方に関する教科書・書籍

医療統計ソフトは無料のもの(Rなど)から非常に高価なものまで(SPSSなど)いろいろありますが、医学研究の分野ではSPSS(IBM社)が定番のようです。SPSSの使い方に関する教科書・書籍が多数ありますので、まとめておきます。

 

SPSSによる回帰分析

内田 治『SPSSによる回帰分析』(オーム社 2013年8月23日 )

  1. 第1章 回帰分析入門 ◇1.1 回帰分析の概要 ■回帰分析とは ■回帰分析の用語 ■回帰分析の用途 ◇1.2 回帰分析におけるデータ ■データの種類 ■測定の尺度 ■変数の種類
  2. 第2章 単回帰分析 ◇2.1 単回帰分析の基本 ■例題1 ■回帰式 ■回帰式の有意性 ■回帰式の有効性 ■母回帰係数の信頼区間 ◇2.2 残差の検討 ■個々の残差 ■残差のヒストグラム ■標準化残差の正規確率プロット ◇2.3 区間推定 ■母回帰式の信頼区間 ■個々のデータの予測区間 ◇2.4 SPSS の手順 ■単回帰分析 ■散布図
  3. 第3章 重回帰分析 ◇3.1 重回帰分析における予備的解析 ■例題2 ○3.1.1 1変数の解析 ■要約統計量 ■データのグラフ化 ○3.1.2 2変数の解析 ■相関行列 ■散布図行列 ○3.1.3 説明変数ごとの単回帰分析 ■x1による単回帰分析 ■x2による単回帰分析 ■x3による単回帰分析 ■x4による単回帰分析 ■単回帰分析のまとめ ◇3.2 重回帰分析の実際 ○3.2.1 重回帰分析の基本 ■回帰式 ■回帰式の有意性 ■回帰式の有効性 ■回帰係数の有意性 ■標準偏回帰係数 ○3.2.2 残差の検討 ■個々の残差 ■残差のヒストグラム ○3.2.3 回帰診断 ■てこ比 ■Cook の距離 ■DfBeta ○3.2.4 相互検証法とリサンプリング法 (1)予測精度の検証 ■Hold out 法 ■K-fold 法 ■Leave-One-Out 法 (2)回帰係数の検証 ■Jackknife 法 ■Bootstrap 法 ◇3.3 SPSS の手順 ■要約統計量 ■ヒストグラム・箱ひげ図・幹葉図 ■ドットプロット ■相関行列 ■散布図行列 ■3次元散布図 ■単回帰分析 ■重回帰分析 ■回帰診断 ■Bootstrap法
  4. 第4章 質的変数とダミー変数 ◇4.1 質的変数を含んだ回帰分析 ■例題3 ■データのグラフ化 ○4.1.1 質的変数とダミー変数 ○4.1.2 ダミー変数の使い方 ■数値例1 ■数値例2 ■数値例3 ○4.1.3 カテゴリの数が3 つ以上のダミー変数 ○4.1.4 ダミー変数の作成 ◇4.2 数量化理論Ⅰ類と共分散分析 ○4.2.1 数量化理論Ⅰ類 ■例題4 ○4.2.2 一般線形モデル ○4.2.3 共分散分析 ■例題5 ■質的変数を含んだ重回帰分析 ■データのグラフ化 ■ダミー変数による重回帰分析の結果 ■共分散分析の結果 ◇4.3 SPSS手順
  5. 第5章 回帰分析における説明変数の選択 ◇5.1 変数選択の方法 ○5.1.1 変数選択の必要性 ■重要な変数と不要な変数 ■良い回帰式 ■説明変数の選択方法 ■変数選択の基準 ○5.1.2 ステップワイズ法 ■例題6 ■変数選択基準の設定 ■ステップワイズ法の結果 ○5.1.3 ベストサブセット法 ◇5.2 説明変数の組合せで生じる問題 ○5.2.1 多重共線性 ■多重共線性とは ■許容度 ■VIF ■例題7 ■説明変数同士の相関行列 ■説明変数ごとの単回帰分析 ■回帰係数の符号逆転 ○5.2.2 解の一意性 ■例題8 ○5.2.3 欠損値の扱い ■例題9 ■リストごとに除外した解析結果 ■ペアごとに除外した解析結果 ■平均値で置き換えた解析結果 ◇5.3 SPSS の手順 ■重回帰分析(ステップワイズ法) ■ベストサブセット法
  6. 第6章 ロジスティック回帰分析 ◇6.1 ロジスティック回帰の基本 ○6.1.1 ロジスティック回帰とは ■例題10 ■ロジスティック回帰の概念 ■データのグラフ化 ■ロジスティック回帰の結果 ○6.1.2 完全分離 ■例題11 ○6.1.3 SPSS の手順 ◇6.2 ロジスティック回帰の実践 ○6.2.1 多重ロジスティック回帰 ■ロジスティック回帰の種類 ■例題12 ■ロジスティック回帰の結果 ■データのグラフ化 ■ロジスティック回帰の結果 ○6.2.2 変数選択 ■変数選択の方法 ■変数選択の結果 ◇6.3 SPSS の手順 ■ロジスティック回帰 ■ロジスティック回帰(尤度比による変数減少法)
  7. 第7章 生存分析とCox 回帰 ◇7.1 生存分析 ○7.1.1 Kaplan- Meier 法による生存率曲線 ■例題13 ■生存分析とは ■生存率 ■生存率曲線 ○7.1.2 生存率曲線の比較と検定 ■例題14 ■2つの生存率の違いに関する検定 ■ログランク検定の結果 ◇7.2 Cox 回帰 ○7.2.1 比例ハザードモデル ■例題15 ■比例ハザードモデル ■Cox回帰の結果 ○7.2.2 複数の説明変数を含むCox 回帰 ■例題16 ■複数の説明変数 ◇7.3 SPSS の手順 ■Kaplan- Meier 法による生存率曲線の作成 ■ログランク検定 ■Cox 回帰 ■複数の説明変数を含むCox 回帰
  8. 第8章 パス解析と因果分析 ◇8.1 因果関係の解析 ○8.1.1 説明変数間の因果関係 ■因果関係の整理 ○8.1.2 パス解析の概念 ■パス図 ■パス解析 ◇8.2 パス解析の実際 ○8.2.1 回帰分析を用いたパス解析 ■x1を説明変数、x2を目的変数とする回帰分析 ■x1を説明変数、x3を目的変数とする回帰分析 ■x2とx3を説明変数、x4を目的変数とする回帰分析 ■x4を説明変数、yを目的変数とする回帰分析 ○8.2.2 共分散構造分析を用いたパス解析 ■共分散構造分析AMOS による解析結果
  9. 付録 ◇付録(1) 一般化線形モデル ◇付録(2) 曲線回帰 ◇付録(3) 回帰木と分類木 ■決定木 ■回帰木の例 ■分類木の例 ◇付録(4) 多重共線性の診断 ◇付録(5) ケースの数と説明変数の数

SPSSを使って重回帰分析をやりたければ、実際的な手順の説明などはこの本が一番詳細だと思います。数式による説明はほとんどないので、そういう説明が苦手な人には読みやすい。

参考

  1. 本書のウェブサイト(データダウンロードサイト
  2. 著者ウェブサイト:内田治 准教授 教員情報 東京情報大学 

 

SPSSによる統計データ解析

柳井 晴夫, 緒方 裕光 編著 改訂新版『SPSSによる統計データ解析 医学・看護学、生物学、心理学の例題による統計学入門』April 1, 2006 現代数学社

  1. 第1章 SPSSの基本的使い方 1.1 データファイルの作成手法 1.2 データの加工(椎名久美子)
  2. 第2章 データの要約 2.1 度数分布表 2.2 単純集計のグラフ表現 2.3 代表値と散らばりの指標 2.4 クロス集計表とグラフ表現 2.5 相関係数 2.6 層別の分析(椎名久美子)
  3. 第3章 統計的推論 3.1 平均値についての推論 3.2 分散についての推論 3.3 相関係数についての推論 3.4 分割表についての推論 3.5 比率についての推論(石井秀宗)
  4. 第4章 分散分析 4.1 一元配置分散分析 4.2 多重比較 4.3 多元配置分散分析(緒方祐光)
  5. 第5章 回帰分析 5.1 単回帰分析 5.2 重回帰分析(佐伯圭一郎)
  6. 第6章 測定の信頼性と妥当性 6.1 測定の信頼性 6.2 測定の妥当性(石井秀宗)
  7. 第7章 主成分分析 7.1 主成分分析の概要 7.2 相関行列に基づく主成分分析 7.3 分散共分散行列に基づく主成分分析 7.4 主成分分析による多変量外れ値の検出(伊藤圭)
  8. 第8章 因子分析 8.1 因子分析の概要 8.2 因子の抽出 8.3 因子の回転 8.4 その他の分析(西川浩昭)
  9. 第9章 クラスター分析 9.1 ケースのクラスタリング 9.2 変数のクラスタリング(西川浩昭)
  10. 第10章 判別分析 10.1 判別分析の概要 10.2 解析例1(3グループの場合) 10.3 解析例2(2グループの場合) 10.4 判別分析に関するその他の問題(Q&A)(林篤裕)
  11. 第11章 ロジスティック回帰分析 11.1 2項ロジスティック回帰 11.2 多項ロジスティック回帰(緒方祐光)
  12. 第12章 対数線形モデル 12.1 基本モデル 12.2 ロジット対数線形モデル(緒方祐光)
  13. 第13章 生存時間データの解析 13.1 生命表 13.2 カプラン・マイヤー法 13.3 比例ハザードモデル(吉本泰彦)
  14. 第14章 さらに進んだ分析法ー多変量解析法を中心としてー(柳井晴夫)

数学書の出版で定評のある現代数学社から出ているSPSSを用いた統計解析の解説書。初版が2006年ですから、信頼のおけるロングセラーです。SPSSがどんどんバージョンアップしているのでそれに合わせるために改訂版が出たそうです。

SPSSのメニューのド個をクリックしてみたいな実際的な手順がある一方で、極めて簡潔ながら理屈に関する説明も多少あって、バランスが良いスタイル。

 

SPSSで学ぶ医療系データ解析

対馬 栄輝『SPSSで学ぶ医療系データ解析 第2版』December 7, 2016 東京図書

  1. 第1章 データの設定 §1.1 データ入力の方法 §1.2 値ラベルの設定:数値データを日本語表示する
  2. 第2章 データ解析の基本事項 §2.1 データとは §2.2 標本と母集団 §2.3 データの尺度 §2.4 データ縮約のための記述統計量 §2.5 データの分布(確率分布) §2.6 標本分布 §2.7 信頼区間(区間推定) §2.8 SPSSによる記述統計量 §2.9 グラフ
  3. 第3章 統計的検定の基礎 §3.1 統計的仮説とは §3.2 統計的「有意」とは §3.3 第I 種の誤り, 第II 種の誤り §3.4 両側検定, 片側検定 §3.5 パラメトリック検定とノンパラメトリック検定 §3.6 パラメトリック検定,ノンパラメトリック検定の選択法 §3.7 SPSSによるShapiro-Wilk検定
  4. 第4章 検定の選択方法 §4.1 標本の数の数え方 §4.2 データどうしの差を検定したい(2つまでのデータの差) §4.3 データ列どうしの関連性を見たい §4.4 名義尺度データの頻度の偏りや関連度を見たい §4.5 3 つ以上の標本・変数の差をみたい §4.6 測定の信頼性を知りたい
  5. 第5章 差の検定 §5.1 差の検定とは §5.2 平均に関する検定(パラメトリックな法) §5.3 分布中心の差に関する検定(ノンパラメトリックな手法) §5.4 差の検定における注意事項
  6. 第6章 相関・回帰分析 §6.1 相関とは §6.2 回帰分析とは §6.3 相関と回帰分析における注意事項 §6.4 相関における注意点 §6.5 回帰分析における注意点
  7. 第7章 分割表の検定 §7.1 分割表の検定とは §7.2 連関係数とは §7.3 リスク比オッズ比 §7.4 Mantel-Haenszel推定量 §7.5 分割表検定における注意事項
  8. 第8章 1元配置分散分析 §8.1 分散分析とは §8.2 t検定のくり返しによる検定多重性の問題 §8.3 1元配置分散分析(パラメトリックな手法) §8.4 Kruskal-Wallis検定(ノンパラメトリックな手法) §8.5 分散分析における注意事項
  9. 第9章 多重比較法 §9.1 多重比較法とは §9.2 パラメトリックな手法(等分散性が仮定できるとき) §9.3 パラメトリックな手法(等分散性が仮定できないとき) §9.4 SPSSによる多重比較法 §9.5 ノンパラメトリックな手法 §9.6 多重比較法における注意事項 §9.7 多重比較法の手法選択
  10. 第10章 2元配置分散分析 §10.1 2元配置分散分析とは §10.2 交互作用 §10.3 要因について §10.4 SPSSによる2元配置分散分析(くり返しのある) §10.5 2元配置分散分析結果の読み方 §10.6 交互作用が有意であったときの対応 §10.7 SPSSによる2元配置分散分析(くり返しのない) §10.8 実験計画 §10.9 2元配置分散分析における注意事項
  11. 第11章 反復測定による分散分析 §11.1 反復測定による分散分析とは §11.2 SPSSによる反復測定による分散分析 §11.3 Friedman検定(ノンパラメトリックな手法) §11.4 元配置以上の分散分析と反復測定による分散分析の関係 §11.5 反復測定による分散分析における注意事項
  12. 第12章 検者間・検者内信頼性係数 §12.1 級内相関係数(ICC)とは §12.2 級内相関係数(ICC)の基礎理論 §12.3 級内相関係数(パラメトリックな手法) §12.4 SPSSによる級内相関係数 §12.5 カッパ係数とは(ノンパラメトリックな手法) §12.6 SPSSによるカッパ係数 §12.7 検者間・検者内信頼性係数における注意事項
  13. 第13章 重回帰分析 §13.1 重回帰分析とは §13.2 重回帰式を作るための基礎知識(変数選択の手順) §13.3 重回帰分析の結果を判定する指標 §13.4 モデルの適合度評価 §13.5 SPSSによる重回帰分析 §13.6 重回帰分析の結果の読み方 §13.7 重回帰分析における注意事項 §13.8 関連するその他の手法
  14. 第14章 多重ロジスティック回帰分析 §14.1 多重ロジスティック回帰分析とは §14.2 解析のしくみ §14.3 変数選択の方法 §14.4 多重ロジスティック回帰分析の結果を判定する指標 §14.5 モデルの適合度評価 §14.6 変数の加工 §14.7 SPSSによる多重ロジスティック回帰 §14.8 多重ロジスティック回帰分析における注意事項と類似手法の紹介

この本は、実験で頻出する「反復測定」のデータの解析に関してひとつの章を割いて説明していて、自分には役立ちました。よくある実験デザインなのに、その解析方法に関して十分な紙面を割いた本は意外と少ないため。

参考

  1. 著者ウェブサイト:対馬栄輝研究室 弘前大学 医学部 保健学科 理学療法学専攻 著者略歴:弘前大学医療技術短期大学部理学療法学科(保健衛生学士)、弘前大学 大学院 理学研究科 (修士課程)、弘前大学大学院 医学研究科 社会医学系 公衆衛生学講座(博士課程)、弘前大学大学院保健学研究科(教授)

 

SPSSとAmosによる心理・調査データ解析

小塩真司『SPSSとAmosによる心理・調査データ解析 : 因子分析・共分散構造分析まで 第3版 』東京図書, 2018.

  1. 第1章 データ解析の基本事項――データの形式,入力と代表値
  2. 第2章 相関と相関係数――データの関連を見る
  3. 第3章 χ2検定・t 検定――2変数の相違を見る
  4. 第4章 分散分析――3変数以上の相違の検討
  5. 第5章 重回帰分析――連続変数間の因果関係
  6. 第6章 因子分析――潜在因子からの影響を探る
  7. 第7章 因子分析を使いこなす――尺度作成と信頼性の検討
  8. 第8章 共分散構造分析――パス図の流れをつかむ
  9. 第9章 共分散構造分析を使いこなす――多母集団の同時解析とさまざまなパス図
  10. 第10章 カテゴリを扱う多変量解析――クラスタ分析・判別分析・ロジスティック回帰分析・コレスポンデンス分析

交絡(confounding),交絡因子をわかりやすく簡単に説明すると

臨床研究では交絡因子(confounderあるいはconfounding factor)の理解が必須です。暴露因子とアウトカムとの因果関係を結論づける際に、交絡因子の存在を見落としてしまうと、謝った結論を導いてしまうからです。

交絡とは

暴露因子 ⇒ アウトカム

という因果関係を臨床研究により証明したいとします。そのときに、交絡因子とは何かというと、暴露因子とアウトカムの両方に影響を与える因子のことです。例として、

高血圧(暴露因子) ⇒ 心血管イベント(アウトカム)

を証明したいとします。しかし、ここで交絡因子として例えば「年齢」が考えられます。なぜなら年齢が高いほど血圧が高くなる傾向があり、また、年齢が高いほど心血管イベントを生じやすいという事実があるからです。つまり、年齢の寄与が大きい場合に、かりに高血圧が本当に心血管イベントを生じさせるとしても、その影響を過大評価してしまうことになります。

交絡因子の例

もっと極端な例として、研究医を目指す太郎医師が、

ライターやマッチを所持 ⇒ 肺がんを罹患

という因果関係がありそうだと考えたとします。このとき太郎医師が見落としている交絡因子として「喫煙」が考えられます。喫煙が交絡しているという言い方もします。喫煙は肺がんの原因になりますし、喫煙はライターやマッチを持つという行動の要因にもなっているからです。このようなバカバカしい例を考える事で、交絡因子を見落とすことで、どれほど頓珍漢な結論を導いてしまう恐れがあるかがわかるでしょう。

もう少し危うい例として、ブロッコリーをたくさん食べる人は高脂血症になりやすいか?を考えてみます。

ブロッコリーの多量摂取(暴露因子) ⇒ 高脂血症の発症(アウトカム)

このような実験結果が得られたときに、ブロッコリーには何か、高脂血症を引き起こす成分が含まれているに違いないと考えて、その成分を同定する研究をこの先やっていってよいものでしょうか。ちょっと待ってください。交絡因子の存在を検討しておく必要があります。ブロッコリーを食べるとき、マヨネーズをかけて食べる人が多いと思います。マヨネーズが高脂血症を引き起こす場合に、マヨネーズは交絡因子になっていると考えられます。

交絡因子の見つけ方

交絡因子の条件は、(1)アウトカムの原因になっている、(2)暴露因子の原因にもなっている、(3)暴露因子が原因となって生じるものではない(言い換えると、中間因子ではない) と定められています。

例えば、 家庭がお金持ち(暴露因子) ⇒ 進学塾に通わせてもらえる(中間因子) ⇒ 学業成績がいい(アウトカム)
のようなスキームを考えた場合、通塾していることは中間因子とみなされます。

ブロッコリー⇒マヨネーズという図式が考えられなくもないですが、だからといって、マヨネーズが中間因子だとはあまり考えないようです。その辺の線引きは微妙ですね。

交絡因子は日本語の読み方は、「こうらくいんし」で、英語ではconfounderと言います。交絡するもの という意味ですね。

キーワード:交絡要因 交絡 意味 交絡因子 ブロッコリー 交絡因子 意味 交絡因子 調整 交絡因子 取り除く

傾向スコア

 

  1. 傾向スコアによるマッチング(StatsGuild)例えば、介入群では高年齢層・喫煙者が多く、対照群では若年層・非喫煙者・高血圧・飲酒が多かったりするように背景情報がバラバラになってくると、治療効果が介入による影響なのか、年齢や喫煙、高血圧など背景要因の影響によるものなのかが分からなくなります。

逆確率重み付け

  1. 逆確率重み付けを目的変数が連続データの場合にも使用することはできるか?
  2. 新谷歩の今日から使える医療統計学ビデオ講座: 傾向スコアの使い方とコンセプト 新谷 YOUTUBE
  3. Inverse Probability of Treatment Weighting Part 2 concept of IPTW Shintani Ayumi YOUTUBE

観察研究の限界:未知の交絡因子の存在

  1. メトホルミンの有効性、実は見せかけ? negative control outcomeによる残留交絡因子の検証 2022年11月22日 05:05 MedicalTribune Powell氏らは「メトホルミンの観察研究で一般に用いられる研究デザインは残留交絡因子の検討が不十分であり、観察された有益な効果はメトホルミン自体ではなく患者個人の健康状態に関連する残留交絡因子に起因している可能性がある」と結論。
  2. 臨床試験を斬る https://www.gi-cancer.net/gi/study/01/page2.html
  3. 観察研究は交絡因子の処理に注目 臨床医学統計セミナー これらを交絡因子と呼ぶが、観察研究では未知の因子まで考慮できない限界性があり、概してエビデンスレベルでRCTに及ばない