Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis Yi Ding, Diego Ploper, Eric A. Sosa, +5, and Edward M. De Robertis ederobertis@mednet.ucla.eduAuthors Info & Affiliations Contributed by Edward M. De Robertis, February 24, 2017 (sent for review January 17, 2017; reviewed by Juan Larraín and Stefano Piccolo) March 27, 2017 114 (15) E3081-E3090 https://doi.org/10.1073/pnas.1700766114 https://www.pnas.org/doi/full/10.1073/pnas.1700766114
The Xenopus homeobox gene Twin mediates Wnt induction of Goosecoid in establishment of Spemann’s organizer Micheline N. Laurent,, Ira L. Blitz, Chikara Hashimoto, Ute Rothbacher, Ken W.-Y. Cho Author and article information Development 01 December 1997
Establishment of the Dorsal–Ventral Axis inXenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation Jeffrey R Miller a, Brian A Rowning a,b, Carolyn A Larabell b, Julia A Yang-Snyder a, Rebecca L Bates a, Randall T Moon a J Cell Biol. 1999 Jul 26;146(2):427–438. doi: 10.1083/jcb.146.2.427 https://pmc.ncbi.nlm.nih.gov/articles/PMC2156185/
The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes.
The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module BMC Developmental Biology volume 11, Article number: 74 (2011)https://bmcdevbiol.biomedcentral.com/articles/10.1186/1471-213X-11-74
ニワトリ胚の神経誘導はカエルほど単純ではないようです。
In Xenopus, the release from the inhibitory, epidermal inducing signal bone morphogenetic protein-4 (BMP-4) by antagonizing secreted factors such as chordin, noggin, and follistatin, or by simple cell dissociation, seems to be sufficient to make ectodermal cells develop into neural tissue. Several lines of evidence in amniotes suggest a much higher degree of complexity. In the chick, inhibition of the BMP signaling pathway does not lead to neural differentiation, nor can BMPs prevent initial induction. However, antagonism between BMP-4 and chordin seems to play a role in controlling the extent of the neural plate once it is formed.
Cell Lineage and Fate Determination 1999, Pages 437-449 29 – More to Neural Induction Than Inhibition of BMPs Andrea Streit , Claudio D. Stern https://www.sciencedirect.com/science/article/abs/pii/B9780125052559500304?via%3Dihub
Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists BMP 阻害は神経誘導の最終段階でのみ必要であり、FGF および Wnt 拮抗薬以外のシグナルが関与します。 C. Linker et al.
Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition アフリカツメガエルにおける神経誘導には BMP 阻害が必要ですが、それだけでは十分ではありません。神経運命の出現には前胚 FGF シグナル伝達が必要です。 Emilie A Delaune et al.
Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. 神経誘導は、Smad1 リン酸化を介した抗 BMP、FGF8、および IGF2 シグナルの統合によって生じます。 Genes & development E. Pera et al.
BMP inhibition initiates neural induction via FGF signaling and Zic genes BMP 阻害は、FGF シグナル伝達と Zic 遺伝子を介して神経誘導を開始します。 Proceedings of the National Academy of Sciences Leslie Marchal et al. 127 Citations 2009 Info Highly Cited Ask this paper icon button Study snapshot Save Cite Share
BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus. BMP シグナル伝達の阻害は、アフリカツメガエル胚の外胚葉組織片における神経誘導には十分ですが、結論には sox 遺伝子発現の解釈によって若干の矛盾が生じます。 Developmental biology A. Wills et al. 46 Citations 2010 icon button Study snapshot Save Cite Share
BMP signalling inhibits premature neural differentiation in the mouse embryo BMP シグナル伝達は哺乳類の神経誘導において中心的な役割を果たしますが、FGF は着床後のマウス胚において神経誘導因子として作用しません。 Aida Di-Gregorio et al. 188 Citations 2007 Info In Vitro Trial Info Highly Cited icon button Study snapshot Save Cite Share
An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo FGF シグナル伝達は、ニワトリ胚における BMP 発現の抑制と神経運命の獲得に必要です。 Current Biology S. Wilson et al. 342 Citations 2000 Info In Vitro Trial Info Highly Cited icon button Study snapshot Save Cite Share
FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction 鳥類の神経堤誘導には、胚葉形成中の神経堤上胚葉予定層内での FGF/MAPK シグナル伝達が必要である。 Development T. Stuhlmiller et al. 83 Citations 2012 Info In Vitro Trial Info Highly Cited icon button Study snapshot Save Cite Share
The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module BMP 阻害と FGF シグナル伝達は、それぞれの遺伝子の発現に異なるシグナル伝達要件を伴い、互いに独立して神経遺伝子を誘導します。 BMC Developmental Biology C. Rogers et al. 19 Citations 2011 Info In Vitro Trial icon button Study snapshot Save Cite Share
Regulation of Neural Specification from Human Embryonic Stem Cells by BMP and FGF FGF は、神経誘導のための BMP シグナル伝達とは独立して、ヒトの神経の特異性を強化します。 STEM CELLS T. Lavaute et al. 97 Citations 2009 Info In Vitro Trial Info Highly Cited
カエル
15 November 2012 BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border Development (2012) 139 (22): 4220–4231. https://journals.biologists.com/dev/article/139/22/4220/45624/BMP-Wnt-and-FGF-signals-are-integrated-through
Development . 1996 Jun;122(6):1711-21. doi: 10.1242/dev.122.6.1711. Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox https://journals.biologists.com/dev/article/122/6/1711/39169/Regulation-of-dorsal-ventral-patterning-the
ニワトリ
The acquisition of neural fate in the chick Mechanisms of Development Volume 121, Issue 9, September 2004, Pages 1031-1042 Mechanisms of Development Review https://www.sciencedirect.com/science/article/pii/S0925477304001303
Reciprocal Repression between Sox3 and Snail Transcription Factors Defines Embryonic Territories at Gastrulation Developmnetal Cell Volume 21, Issue 3, 13 September 2011, Pages 546-558
Mechanisms of Development Volume 82, Issues 1–2, 1 April 1999, Pages 51-66 Mechanisms of Development Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity https://www.sciencedirect.com/science/article/pii/S0925477399000131
ゼブラフィッシュ
Development . 2012 Nov;139(22):4220-31. doi: 10.1242/dev.081497. Epub 2012 Oct 3. BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border Aaron T Garnett 1, Tyler A Square, https://pubmed.ncbi.nlm.nih.gov/23034628/
神経堤細胞の誘導
Post-transcriptional tuning of FGF signaling mediates neural crest induction Jacqueline Copeland and Marcos Simoes-Costa simoescosta@cornell.eduAuthors Info & Affiliations PNAS December 21, 2020 117 (52) 33305-33316https://www.pnas.org/doi/10.1073/pnas.2009997117
15 June 2000 Region-specific activation of the Xenopus Brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos Walter Lerchner, Branko V. Latinkic, Jacques E. Remacle, Danny Huylebroeck, James C. Smit
Brachyury Knockdown Phenotype in Xenopus
Brachyury (Xbra) is a crucial gene involved in mesoderm formation and notochord differentiation in vertebrates, including Xenopus. The following synthesis presents the key findings from multiple research papers on the phenotype observed when Brachyury is knocked down in Xenopus.
Key Insights
Failure in Gastrulation Movements:
Knockdown of Brachyury in Xenopus embryos results in the failure to complete gastrulation due to the loss of convergent extension movements, which are essential for proper morphogenetic movements13.
Down-Regulation of Downstream Genes:
Brachyury knockdown leads to the down-regulation of its downstream genes, including Xwnt11, which is crucial for regulating gastrulation movements via the Dishevelled pathway, but not through the canonical Wnt pathway13.
Morphological Defects:
Both genetic knockout (KO) and morpholino-mediated knockdown (KD) of Brachyury in Xenopus result in virtually identical morphological defects, indicating the critical role of Brachyury in early development2.
Off-Target Effects and Immune Response:
Morpholino-mediated knockdown of Brachyury can induce off-target splicing defects and a systemic immune response, which can be mitigated but not entirely eliminated by optimizing morpholino dosage and incubation conditions2.
Conclusion
Knockdown of Brachyury in Xenopus leads to significant developmental issues, primarily characterized by the failure of gastrulation movements due to disrupted convergent extension. This is accompanied by the down-regulation of key downstream genes like Xwnt11. While both genetic knockout and morpholino-mediated knockdown produce similar morphological defects, the latter can also cause off-target effects and immune responses. These findings underscore the essential role of Brachyury in early vertebrate development and the complexities involved in gene knockdown studies.
(consensus.ai)
Highly conserved functions of the Brachyury gene on morphogenetic movements: insight from the early-diverging phylum Ctenophora. アフリカツメガエルの胚における Brachyury のノックダウンは、収束伸展運動の喪失により胚葉形成の完了に失敗する結果となる。Developmental biology A. Yamada et al. 49 Citations 2010
Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus 対照または標的 MO を注入された胚は、全身の GC 含有量依存性免疫応答と多くのオフターゲットスプライシング欠陥を示します。 Developmental Cell George E. Gentsch et al. 41 Citations 2018
Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Xbra の転写活性化の妨害は、胚葉形成中の形態形成運動の阻害につながります。 Development M. Tada et al. 742 Citations 2000
Cooperative non-cell and cell autonomous regulation of Nodal gene expression and signaling by Lefty/Antivin and Brachyury in Xenopus. アフリカツメガエルにおけるブラキュリ媒介転写抑制は、オーガナイザーおよび中内胚葉組織のさらなる拡大につながり、背側の特異性に影響を及ぼします。 Developmental biology Y. R. Cha et al. 33 Citations 2006
The Brachyury gene encodes a novel DNA binding protein. Brachyury 変異胚は中胚葉形成が不十分で、体軸の発達が完了せず、脊索が最も影響を受けます。 The EMBO Journal A. Kispert et al. 364 Citations 1993
In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Brachyury の体内でのノックダウンは、胎児の尾部退縮症候群に似た骨格異常および尿直腸奇形を引き起こします。 Developmental biology T. Pennimpede et al. 50 Citations 2012
Goosecoid and mix.1 repress Brachyury expression and are required for head formation in Xenopus. goosecoid または mix.1 の機能が阻害されると、Xbra が一時的に異所的に発現し、背前部異常や心臓および腸管の形成異常が生じます。 Development Branko V. Latinkić et al. 116 Citations 1999
Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction Brachyury のアフリカツメガエル相同遺伝子である Xbra は、胚葉口周囲の予定中胚葉細胞で発現し、その後脊索で発現します。 Cell James C. Smith et al. 1,030 Citations 1991 本文有料
The transplantation of the node, a critical embryonic structure, has been studied for its ability to induce ectopic body axes in both mice and chicks. This research explores the node’s role in axis formation and its potential to organize and pattern embryonic development when transplanted to non-native locations.
Key Insights
Induction of Ectopic Neural Axis in Mice:
Transplanting the mouse node to a posterolateral location in a host embryo induces a second neural axis and ectopic somites. The graft predominantly forms notochord and endoderm, while the host contributes to neurectoderm and somites.
Induction of Ectopic Axis in Chicks:
Hensen’s node in chick embryos can induce a complete embryonic axis, including a fully patterned central nervous system, when transplanted to an ectopic site. This includes host-derived neural tissue.
Role of Node in Axis Formation:
The mouse node is crucial for the formation of the notochord, floor plate, and gut endoderm. Its ablation leads to the recruitment of surrounding tissues to restore the neural tube and paraxial mesoderm, although the body axis may be foreshortened and somite formation delayed.
Synergistic Activity in Axis Induction:
In mice, the combination of the early gastrula organizer (posterior epiblast), anterior visceral endoderm, and anterior epiblast is necessary to induce anterior neural structures and form an ectopic axis. The anterior germ layer tissues alone do not act as a classical organizer5.
Molecular Mechanisms in Chicks:
The protein Tsukushi (TSK) in chicks inhibits BMP signaling, which is essential for the formation of Hensen’s node and the induction of an ectopic node when combined with the middle primitive streak7.
Conclusion
The transplantation of the node in both mice and chicks can induce the formation of ectopic body axes, demonstrating its critical role in embryonic patterning. In mice, the node primarily contributes to the notochord and endoderm, while(全然対比になっていない。。) in chicks, Hensen’s node can induce a complete axis including neural tissues. The induction of anterior neural structures in mice requires a combination of specific germ layer tissues, highlighting the complexity of axis formation. Molecular mechanisms, such as BMP inhibition by Tsukushi in chicks, further elucidate the processes involved in node-induced axis formation.
No, Norrin and Noggin are different genes with distinct functions and roles in development.
Key Differences between Norrin and Noggin:
Noggin:
Gene Symbol: NOG
Function: Noggin is a secreted protein that acts as an antagonist of BMP (Bone Morphogenetic Protein) signaling. It binds to BMPs and prevents them from interacting with their receptors, which helps to regulate dorsal-ventral patterning during early embryonic development.
Role in Development: Noggin is crucial for neural induction and dorsalization of mesoderm, particularly in the context of vertebrate development. It is one of the organizer molecules discovered in studies on Spemann’s organizer.
Pathways: It primarily modulates TGF-β family signaling, including BMPs.
Norrin:
Gene Symbol: NDP (stands for Norrie Disease Protein)
Function: Norrin is a secreted signaling molecule that functions as a ligand for the Frizzled-4 (FZD4) receptor in the Wnt/β-catenin signaling pathway.
Role in Development: Norrin is primarily involved in the development of the retina and inner ear. It plays a critical role in vascular development, especially in the retina and blood-brain barrier. Mutations in the NDP gene are associated with Norrie disease, which leads to blindness and other developmental issues.
Pathways: Norrin functions through the Wnt signaling pathway, specifically by binding to Frizzled-4 and LRP5/6 to activate β-catenin signaling.
Summary:
Noggin is involved in BMP inhibition and dorsal-ventral patterning during embryonic development.
Norrin is involved in Wnt signaling, particularly in the context of vascularization and retinal development.
They are distinct genes with different roles and mechanisms in development, even though their names sound similar.
Patterning mechanisms controlling vertebrate limb development. J. Capdevila, J. C. I. Belmonte · 2001 脊椎動物の四肢芽では、シグナル伝達経路間の複雑な相互作用により、四肢の位置決め、成長、パターン形成が制御されます。 https://www.annualreviews.org/content/journals/10.1146/annurev.cellbio.17.1.87 本文有料 総説論文
Analysis of Hox gene expression in the chick limb bud. C. Nelson, Bruce A. Morgan, Ann C. Burke+7 more · 1996年5月1日 肢芽における Hox 遺伝子の発現は、肢の近位遠位節 (上腕、下腕、手) の指定とパターン形成に関連して、最大 3 つの独立した段階で制御されます。https://journals.biologists.com/dev/article/122/5/1449/39007/Analysis-of-Hox-gene-expression-in-the-chick-limb
Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage https://www.biorxiv.org/content/10.1101/2020.07.16.167320v1.full
Developmental Cell Volume 1, Issue 5, November 2001, Pages 605-617 Journal home page for Developmental Cell Review Nodal Signaling in Early Vertebrate Embryos: Themes and Variations https://www.sciencedirect.com/science/article/pii/S1534580701000764
TGF-β Family Signaling in Early Vertebrate Development June 2017Cold Spring Harbor Perspectives in Biology 10(6):a033274 DOI:10.1101/cshperspect.a033274 https://www.researchgate.net/figure/TGF-b-family-signaling-gradients-during-gastrulation-A-Embryonic-tissues-patterned-by_fig1_317494952