未分類」カテゴリーアーカイブ

心臓の構造と機能、分子メカニズムなど

心臓の構造

ポンプとして血液を送り出すのが「心室」、血液が入ってくるとこが「房室」。全身に送り出すのは「左心室」。房室から心室へとつながっている。これだけおさえておけば、左心室から血液を全身におくり、右心房に全身から戻ってきて、右心室から肺に送られ、肺から左心房に戻ってきて、左心室に入って再び全身へという流れが、記憶に頼らずともつくれます。

全身→右心房→右心室→肺→左心房→左心室→全身

  1. 心臓ってどんな臓器 東豊中動物病院 大阪府豊中市東豊中町

 

心臓の弁の名称

左心房から大動脈がでているので、逆流を防ぐのが大動脈弁 aortic valve。右心室から肺へむかう肺動脈があるので、逆流を防ぐのが肺動脈弁 pulmonary valve。左心房から左心室へ向かう血流の逆流を防ぐのが、「僧帽弁 mitral valve」。これは覚えておくしかない。そして、4つめの弁ですが、右心房から右心室へ向かう血流の逆流を防ぐのが「三尖弁 tricuspid valve」。これも覚えておくしかありません。全身に血液を送る左心室が、主役級なので僧帽弁は耳にすることが多いです。それに対して、三尖弁はちょっと地味な存在。

The tricuspid valve is often referred to as the “forgotten” valve, as historically, surgeons have been loath to intervene for a variety of reasons. https://www.jtcvs.org/article/S0022-5223(20)31258-7/

 

心臓におけるcAMPの働き

アドレナリンやノルアドレナリンはβ1受容体に結合し、GプロテインGsを活性化して、アデニル酸シクラーゼ(adenylate cyclase; AC)を活性化し、細胞内cAMP濃度を上昇させる。cAMPはプロテインキナーゼA(PKA)を活性化し、PKAは細胞膜上のL型カルシウムチャンネルを開口させる。細胞外から流入したカルシウムイオンはさらに心筋小胞体(sarcoplasmic reticulum;SR)の膜上にあるリアノジン受容体を活性化して心筋小胞体からカルシウムイオンを放出させる。このような細胞内カルシウムイオン濃度の上昇が、心筋細胞の収縮性を高める。

These and other intracellular events increase inotropy (muscle contractility), chronotropy (heart rate), dromotropy (velocity of electrical conduction) and lusitropy (relaxation rate). https://www.cvphysiology.com/Blood%20Pressure/BP011a

  1. Cardiac Signal Transduction Mechanisms (G-Protein-Linked) https://www.cvphysiology.com/Blood%20Pressure/BP011a

pHと緩衝液について

 

緩衝液とは

下の動画では直観的な説明、緩衝液をつくる原理などが述べられています。数あるYOUTUBE勉強動画の中でもエンジョイケミストリーはずば抜けてわかりやすい(丁寧で、ポイントをきっちりと強調している)と思います。自分が高校のときに受けた化学の授業や予備校での化学の授業と比べても、圧倒的なわかりやすさ。高校でこういう授業を受けていれば、浪人しなくてすんだのに。。予備校でこういう授業をうけていれば、化学が最後まで苦手ということにはならなかったのに。。。

緩衝液 性質 原理 わかりやすく 高校化学 エンジョイケミストリー 124208 ヒロシのエンジョイケミストリー チャンネル登録者数 8190人

緩衝液は、「弱酸+その塩」 または「弱塩基+その塩」 でつくるのだそうです。例えば、

酢酸CH3COOH ⇔ CH3COO- + H+

酢酸ナトリウムCH3COONa ⇔ CH3COO- + Na+

一応平衡反応として両方向の矢印を書きましたが実際には、酢酸はほとんど電離せずほとんどが酢酸のままの状態、一方、酢酸ナトリウムは全部電離して平衡は右側に寄った状態(酢酸ナトリウムはほとんど存在しない)だそうです。そのため、[CH3COO-]=[酢酸ナトリウム],[CH3COOH]=[酢酸] と近似してよくて

平衡定数Ka =[CH3COO-][H+] / [CH3COOH]=[酢酸ナトリウム][H+]/[酢酸]

[H+]=Ka [酢酸] /[酢酸ナトリウム]

としてpH=-log[H+]でpHの計算ができるそうです。

 

マクマリー一般化学(下)の説明も読んでみました。

弱酸とその共役塩基を含む溶液は、pHの大幅な変化に抵抗するので、緩衝液と呼ばれる。(マクマリー一般化学(下) 15.溶液の平衡とその応用 356ページ)

「塩」というかわりに「共役塩基」という言葉を使っていますが、同じことです。酸がAHがH+を放出してA-になると、逆反応ではA-はH+を受け取ることができるので「塩基」として働きます。緩衝液になる酸と共役塩基の例として、

CH3COOHとCH3COO-

NH4+とNH3

H2PO4-とHPO4 2-

などが紹介されています。生化学で重要なのは炭酸による緩衝作用でしょう。二酸化炭素CO2が水H2Oに溶けると炭酸H2CO3になります。炭酸H2CO2は弱酸でH2CO2⇔重炭酸イオンHCO2- + H+のように一部が電離します。

実験室でバッファーをつくりたければ弱酸とその塩を混ぜればいいのですが、生体内では炭酸の塩はどうやって得られるのでしょうか。炭酸の塩は炭酸水素ナトリウムHCO2Na(いわゆる、重曹)です。いろいろな解説記事をみると、腎臓でH+を捨ててHCO3- を保持するということをしているようです。電荷の偏りが生じたらこまるのでH+を捨てる分Na+を保持するのでしょうか。そうすれば重曹ができることになります。

The kidney plays key roles in extracellular fluid pH homeostasis by reclaiming bicarbonate (HCO3) filtered at the glomerulus and generating the consumed HCO3 by secreting protons (H+) into the urine (renal acidification). Sodium-proton exchangers (NHEs) are ubiquitous transmembrane proteins mediating the countertransport of Na+ and H+ across lipid bilayers. In mammals, NHEs participate in the regulation of cell pH, volume, and intracellular sodium concentration, as well as in transepithelial ion transport.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878276/

  1. 重炭酸塩 プライマリケア 血液中の重炭酸塩濃度は、腎臓からの水素イオンの排出、肺からの二酸化炭素の放出、および、尿細管からの重炭酸イオンの再吸収などの要素によって調節されている。
  2. 酸塩基の調節 MSDマニュアルプロフェッショナル版 細胞外の最も重要な緩衝物質はHCO3/CO2系であり CO2はそれ自体は酸ではないが,炭酸脱水酵素に属する酵素の存在下で,CO2は血中の水(H2O)と結合して炭酸(H2CO3)を産生し,これが水素イオン(H+)と重炭酸イオン(HCO3)に解離する。 この重要な緩衝系は高度の調節を受けている;CO2濃度は肺胞換気によって,H+およびHCO3−の濃度は腎排泄によって微細に調節できる。
  3. 炭酸水素ナトリウム製剤の解説 日経メディカル 本剤(炭酸水素ナトリウムを主成分とする製剤)は体内に重炭酸イオンを補充することで、CKD(慢性腎臓病)などの腎機能障害による代謝性アシドーシスや糖尿病によるケトアシドーシスなどの改善が期待できる。
  4. 日 本薬局方 炭酸水素ナトリウム 炭酸水素ナトリウムとして,通常成人1日3~5gを数回に分割経口投与する。
  5. バッファー(緩衝液)の作り方 バイオタイムズ
  6. 炭酸 ウィキペディア
  7. 酸塩基平衡(後編)重炭酸緩衝系とは ゴロー/イラストで学ぶ体の仕組み チャンネル登録者数 24.4万人 YOUTUBE
  8. 化学平衡㉗ 緩衝液の計算4(応用,炭酸の緩衝液のpH) 化学専門塾teppan チャンネル登録者数
  9. 日 本薬局方 炭酸水素ナトリウム
  10. Ⅱ.酸塩基平衡 1.酸塩基平衡の理解に必要な知識 南学正臣*黒川清* 水・電解質代謝異常:診断と治療の進歩 特集●水・電解質代謝異常 日本内科学会雑誌 第80巻 第2号・平成3年2月10日
  11. J Nephrol. 2010 Nov-Dec; 23(0 16): S4–18. PMCID: PMC4699187 NIHMSID: NIHMS270843 PMID: 21170887 Acid-base transport by the renal proximal tubule https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699187/

 

 

酵素反応速度論ミカエリス・メンテン式の導出

ミカエリス・メンテン式の導出は大学の生化学の教科書にたいてい書いてありますが、ちょっとややこしくて、すんなり頭に入ってきにくいため、ミカエリス・メンテン式を分かりやすく説明してくれる動画をいくつか探してみました。

 

【大学化学】ミカエリス・メンテン式【反応速度論】 予備校のノリで学ぶ「大学の数学・物理」 チャンネル登録者数 97.2万人

~7:45 基質、酵素、酵素複合体、生成物の濃度に関する説明
7:45~14:22 ミカエリス・メンテン式の導出
14:22~ ミカエリス・メンテン式が意味することについての解説

動画の中の説明にあった、[ES]一定(定常状態)という仮定を置く(4:23~)というのは知りませんでした(or忘れていたor理解していなかった)。

 

ミカエリスメンテン式 簡単に 解き方 導き方 酵素 高校化学 エンジョイケミストリープラス 151351 ヒロシのエンジョイケミストリー チャンネル登録者数 8190人

~17:07 ミカエリス・メンテンの式の導出

17:07~ ミカエリス・メンテンの式の意味の解説

23:15~ ミカエリス・メンテンの式の直観的な解釈、イメージ

E+S→ESとなる反応の速さv1=k1[E][S]よりも、ES→E+Pとなる反応の速さv2=k2[ES]のほうがずっと遅い(律速段階になる)のだそうです。この動画(エンジョイケミストリープラス)でも、[ES]を一定とするという仮定に関して丁寧な説明がありました(6:30~)。v2は遅くv1は速いため、ES→E+Pという遅い反応が起きたときに、ここでできたEはすぐさま早い反応E+S→ESを起こすので、ESの濃度があまり変わらないということだそうです。これはしっくりくる説明だと思いました。

この定常状態というものを数式でかくなら

S+E→ES、(逆反応)ES→S+E)、ES→E+Pの速度をそれぞれv1, v-1, v2としたときに、生成速度=分解速度なので、v1=v-1 + v2 ということになります。

酵素のモル濃度は基質のモル濃度よりもずっとすくないというのもポイントです。

この動画で最後に、例え話で直観的なイメージを教えてくれていましたが(23:15~)、これがとてもわかりやすいと思いました。曰く、酵素は役所の窓口の係員(数人)、基質は書類を出しにきた市民(数十人)、生成物は無事に書類を受け取ってもらえて帰る人、酵素基質複合体は窓口で受付中の状態(市民と市役所の窓口の人が向かい合っている)、逆反応は書類の不備で撥ねられてしまった市民(書類を作り直してまた行列に並ぶ)というものです。日常生活のアナロジーがぴったりはまると、難しい酵素速度反応論もわかりやすいですね。

ちなみにSはSubstance(物質)でなくSubstrate(基質)のSだと思います。

大腸がん患者へのステント留置術

大腸にできたがん組織が大きくなって大腸の管腔(食べものの通り道)を塞いでしまう(閉塞)と、大変なことになります。腸がふさがっていては、食べものや便が通過できなくて詰まってしまい、破裂の危険があるからです。

閉塞した部分にステントを入れて拡張してやる方法があるそうです。ただしステントは永久に入れておけるものではなくて、ほんの数か月という短い期間だけだそう。がんを切除する手術を先延ばしにするための一時的な措置という位置づけのようです。

  1. 大腸がん末期 健康長寿ネット 長寿科学振興財団

大腸ステントの意義

大腸がんで腸閉塞のために救急車で病院に担ぎ込まれて緊急手術を受けて、考える間もなくいきなり人工肛門になってしまったら患者としてはショックだと思います。とりあえずステントを入れることで腸閉塞の危険性を回避して、考える時間を患者さんに与えるという意義が大きいのでしょう。

  1. 大腸ステントのメリットについて 大腸肛門外来 神戸徳洲会病院 大腸ステントにより閉塞を解除することにより、緊急手術を避けることができます。また本来術前に行う検査をしっかりした上で予定手術を行います。‥ 緊急開腹手術では、患者さんは大腸癌の告知という心理的負担の上に緊急手術人工肛門を作らなければならないという二重のショックを受けることになりがちですが、大腸ステントが上手くいけば、人工肛門を避けることができ十分な状態で癌の切除手術に臨むことができます

ステント留置後の選択

  1. 日本医科大学消化器外科 大腸ステントは,緩和治療(根治できない場合の症状や苦痛を和らげる治療)目的に永久的に留置する場合と根治手術の前に一時的に留置して,全身状態を回復させることを目的とする場合があります。後者の場合は,ステント留置後約3週間経過した後に根治手術を行います。

緩和治療

上の説明で「緩和治療(根治できない場合の症状や苦痛を和らげる治療)目的に永久的に留置する場合」と書いてありましたが、永久的と言っても実際には下の症例報告論文を見ると、3か月くらいで患者さんがステント留置の合併症で亡くなっており、何等かの理由で手術をしない選択をした場合の究極的な選択といった意味合いのようです。

  1. 緩和目的の大腸ステント留置を行った大腸癌閉塞34例 日臨外会誌 82( 6 ),1057―1062,2021 2012年に閉塞性大腸癌に対する大腸ステント留置が保険収載されて以来,終末期の患者に対して緩和目的での大腸ステント留置が急速に普及している.‥ 緩和目的でのステント留置の理由は,高齢であり耐術能がなかったため ‥ 遠隔転移があり進行していたため  ‥ 本人・家族が根治手術を拒否したため ‥ ステント関連合併症は,穿孔 2 例(留置後25日,53 日),逸脱 2 例(留置後71日,218日),再閉塞 6 例(留 置後21日,39日,78日,128日,245日,606日)であ った.‥ 再閉塞のうち 1 例は便塊が原因であり下剤処置 を 行 っ た. 5 例 は 腫 瘍 の ス テ ン ト 内 へ のtumor growthが原因であり, 3 例はstent in stentを行い, 2 例はstent in stentを施行したが閉塞症状が改善さ れず緊急人工肛門造設術を行った.全生存期間の中央値は122(11~614)日であった.

大腸がんの罹患率

  1. 大腸外科とは 三井記念病院 大腸がんにかかる割合は40歳代から増加し始め、高齢になるほど高くなります。生涯で大腸がんに罹患する確率は男性で10人に1人女性で12人に1人で、死亡者数は男性では肺がん、胃がんについで第3位女性では第1位

大腸がんの症状

  1. 大腸がん(外科)(消化器科外科) 大阪医療センター 排便異常(便が出にくい、下痢便秘を繰り返す、下痢便しか出ないなど)や腹痛下血などの自覚症状で発見される大腸癌は、残念ながら、進行大腸癌の場合がほとんどです。

大腸がんのステージ

  1. 大腸がんと病気(進行度)について 豊中敬仁会病院 大腸がんは粘膜から発生します。

大腸がんの転移

    1. 大腸がん末期 健康長寿ネット 長寿科学振興財団 腸管から腹腔内にばらまかれたがん組織は、腹膜に転移して「腹膜播種」という状態になると、腹水や水腎症、激しい腹痛など、様々な症状を引き起こします。‥最も転移しやすい臓器は肝臓です。

大腸の構造

  1. 患者さんのための大腸癌治療ガイドライン 2014年版 大腸がん研究会 大腸は1.5~2mほどの長さの臓器で,結腸直腸に分けられます。結腸は盲腸上行結腸横行結腸下行結腸S状結腸に分けられます。直腸は直腸S状部上部直腸下部直腸に分けられます。虫垂と肛門管は大腸とは区別して取り扱われます。
  2. 直腸がんの手術 近畿大学病院 結腸は盲腸、上行結腸、横行結腸、下行結腸、S状結腸に分けられます。結腸と直腸の境界部は、直腸S状部と呼びます。

大腸がんの治療選択

  1. 大腸がん(結腸がん・直腸がん) 治療 がん情報サービス 遠隔転移巣の切除が不可能であって原発巣の切除が可能な場合で、原発巣による症状があるときなどは、原発巣の手術を勧められることがあります。
  2. S状結腸切除術について(インフォームドコンセントの例)

大腸がんの手術(肛門温存か人工肛門か)

  1. 大腸がんに対する肛門温存手術と人工肛門造設術について 国立がん研究センター 中央病院 原則として大腸がんの中でも肛門から距離のある結腸がんにおいては人工肛門は不要です。また、直腸がんであっても肛門からの距離が一定以上あれば肛門を温存できる(永久人工肛門とならない)ケースが多くあります。

専門医が教える直腸がん手術~イラストで分かりやすく解説~【国立がん研究センター中央病院】国立がん研究センター公式チャンネル チャンネル登録者数 1.55万人

  1. 大腸がんに対する肛門温存手術と人工肛門造設術について 国立がん研究センター 中央病院
  2. 直腸がん治療とロボット手術 Southern Cross Vol. 108 (2019.12) 結腸がんの手術では、がんから10㎝程度離れた部位で腸管を切除し、周囲の血管の根元を含めてリンパ節を扇型にとるリンパ節郭清を行います。

大腸がんの手術の難易度と病院・医師による差

  1. 直腸がん治療とロボット手術 Southern Cross Vol. 108 (2019.12) (肛門に近くの直腸がんの場合)肛門から近いところにあるがんを確実に切り取って結腸と直腸をつなぐ手術は、高度な技術を要する難しい手術です。そのため、施設によっては肛門を残せないといわれることもあります。手術に対する習熟度によっても対応は異なってきます。

大腸がん手術の合併症

  1. <起こりうる合併症と対応法>【大腸がん手術のおもな合併症】縫合不全 腸管のつないだ箇所(吻合部)から便が漏れだすことを縫合不全といいます。
  2. 結腸癌手術における縫合不全の診断と対策 2009

大腸がんの予後

  1. 直腸がん治療とロボット手術 Southern Cross Vol. 108 (2019.12)  結腸がんの5年生存率ステージ4で20%くらい 直腸がんステージ4で14.8%

直腸がんと結腸がん

  1. 直腸がん治療とロボット手術 Southern Cross Vol. 108 (2019.12)  結腸がんは肝転移再発が多く局所再発はまれなのに対し、直腸がんは肺転移再発が多く局所再発が問題になります。

大腸がん手術

S字結腸切除術

  1. S 状結腸切除術 久留米大学医学部外科 緒方 裕 本セミナーでは,S 状結腸癌に対する標準的手 術法について述べ,その実際をビデオで供覧した.

大腸がんに関する論文

  1. Stage IV大腸癌の検討 市立室蘭総合病院
  2. 当科における大腸癌stage4症例の治療成績 演題番号 : P12-5 大腸癌stage4症例における原発巣切除は出血や閉塞などの局所症状コントロールが主目的となり、定型的なリンパ節郭清については行われないことが多く、その意義も明確ではない。

2023年度~のJST戦略的創造研究推進事業テーマ、AMED革新的先端研究開発支援事業のテーマ

科学新聞令和5年3月24日(金)号の報道によれば、2023年度から新たに走り出すJST戦略的創造研究推進事業テーマ、AMED革新的先端研究開発支援事業のテーマが決定したそうです。これにもとづいて、JSTさきがけやJST CRESTの公募が行われることになります。

文部科学省のウェブサイトに、2023年3月14日付けで「2023年度募集予定の新規研究領域」として発表されていました。

量子フロンティア開拓のための共創型研究(JST)

概要 量子技術は社会・経済に大きなイノベーションをもたらすと期待される革新的技術であるが、その実現に向けては様々な課題が山積している。従来、量子技術は物理学が基礎となって発展してきたが、これらの課題の解決に向けては数理科学・化学・情報工学・電気電子工学・機械工学・光科学・材料工学・生命科学などの幅広い分野との融合・連携が必要となる。本戦略目標では、将来的な量子技術の実現を見据えて材料・デバイスからアプリケーションまでの全レイヤでブレイクスルーを目指した研究を推進し、様々な分野とも協調・融合しながらこれまでにない量子デバイスとその制御技術、システム、アプリケーションの実現を目指す。

海洋とCO2の関係性解明と機能利用(JST)

概要 気候変動対策の重要課題である人為起源の二酸化炭素(CO2)の大気中濃度低下のためには、全球(大気・海洋・陸域)の炭素循環プロセスへの理解が不可欠であるが、自然界で最大級のCO2吸収源である海洋とCO2との関係性には未解明な部分が多い。本戦略目標ではミクロからグローバルのスケール横断及び異分野融合アプローチでこの関係性の理解深化を目指す。具体的には、海洋の炭素循環プロセス及び海洋温暖化・酸性化・貧酸素化等のCO2増加に伴う現象がそのプロセスに与える影響、CO2増加の海洋生態系への影響、海洋の機能を利用したネガティブエミッション技術1に関する研究開発を行う。目標の達成を通して、海洋機能の最大限の活用による気候変動対策への貢献を目指す。

新たな半導体デバイス構造に向けた低次元マテリアルの活用基盤技術(JST)

概要 デジタル社会の根幹を担う半導体集積回路には更なる低消費電力化・高速化・高集積化が求められ、そのために新たなトランジスタ構造が必要とされている。将来的には、極薄のナノシート、二次元物質、一次元物質といった低次元マテリアルがトランジスタのチャネル材料として用いられることが期待されている。また、低次元マテリアルは、特異な電子構造を活用した新たな半導体デバイス(各種センサ、光デバイスなどの半導体素子)のコア材料として利用されることが期待されている。本戦略目標では、低次元マテリアルを新たな半導体デバイス構造に活用するために必要な基盤技術の確立を目指す。

人間理解とインタラクションの共進化(JST)

概要 人間・AI・ロボット相互間やそれらと環境とのインタラクションが増加・多様化する中で、それを支える情報科学技術の創出や、人間や社会が受ける影響の理解等に資する研究を発展させることが必要である。本戦略目標では、情報科学技術と人間に対する理解の相互かつ連鎖的な深化・発展と、一人ひとりに寄り添ったインタラクションの実現等を推進することで、多様な価値観を持つ人々が相互に認め合い理解し合える社会や一人ひとりが自然に行動できる社会を支える技術・サービスを創出し、ウェルビーイングの実現を目指す。

革新的な細胞操作技術の開発と細胞制御機構の解明(JST)

概要 近年、細胞操作技術の開発や細胞制御に関わる新たなメカニズムの解明は、我が国においても急速に進展している。特に、細胞操作技術に関しては、例えばゲノム編集技術のように、生命科学のみならず、医療や農業等の分野でも活用され、社会に大きく貢献しうるものであるため、我が国としても重点的に取り組む必要がある。また、細胞操作技術の開発にはその基礎として細胞制御機構を十分理解することが重要であるため、本戦略目標では、細胞制御機構の解明と細胞操作技術の開発を両輪として進めることとする。これまでにない新たなアプローチによる研究開発を推進するため、手法、生物種を特定せずに、多様な研究分野の研究者を巻き込むことで、革新的な細胞操作技術の開発や、細胞操作技術の開発を通じた細胞制御機構に関する新たな知見やイノベーションの創出等を目指す。

ストレスへの応答と病態形成メカニズムの解明(AMED)

概要 社会・環境中に存在する様々な精神的・物理的・化学的ストレスを原因とした疾患の発症を予防することは、国民全体の QOL の向上等を図る上で重要である。しかし、多様なストレスに対する生体応答を詳細に捉えることは難しく、ストレスへの暴露と病態発症の機序が不明なものも多いため、ストレス暴露に対する生体の危険信号を早期に捉えた疾患発症の予防ができていない。このため、本戦略目標では、基礎研究者と臨床研究者が密接に連携した共同研究等を通じて、ストレス応答に対する細胞レベルの現象と個体レベルの現象を科学的・統合的に理解するとともに、病態形成メカニズムの解明を目指す。

葉酸とは

葉酸の役割

葉酸の役割を一言でいうと、炭素を一個付加する反応の際に働く補酵素テトラヒドロ葉酸の材料です。「炭素1個」としては、メチル基、メチレン基、ホルミル基があります。

Tetrahydrofolate (THF) is the coenzyme used by enzymes that catalyze reactions that transfer a group containing a single carbon to their substrates. The one-carbon group can be a methyl group (CH3), a methylene group (CH2), or a fromyl group (HC=O). Tetrahydrofolate is produced by the reduction of two double bonds of folic acid (folate), its precursor vitamin.

page 1144 Chapter 23 23.7 FOLIC ACID  Bruice Organic Chemistry 8e 

葉酸の構造

葉酸とは、狭義にはプテロイルモノグルタミン酸を指すが、広義には補酵素型、すなわち、還元型一炭素単位置換型及びこれらのポリグルタミン酸型も含む総称名である。https://www.mhlw.go.jp/shingi/2009/05/dl/s0529-4u.pdf

  1. https://www.researchgate.net/figure/The-structure-of-Pteroylmonoglutamic-acid-from-Lucock-et-al-1995_fig1_11475013
  2. 葉酸(ウィキペディア)
  3. Folates usually have a γ-linked polyglutamyl tail of up to about eight residues attached to the first glutamate.  https://www.researchgate.net/figure/The-structure-of-tetrahydrofolate-In-natural-folates-the-pterin-ring-exists-in_fig1_6192439

テトラヒドロ葉酸の構造式

テトラヒドロの意味は、葉酸の構造の要素であるプテリンの5,6,7,8は二重結合があるので、二重結合が一重になってそのぶん、Hが4つくわわったということだと思います。

(Fig from http://what-when-how.com/molecular-biology/tetrahydrofolate-molecular-biology/)

  1. 5,6,7,8-テトラヒドロプテロイル-L-グルタミン酸, THF https://www.sigmaaldrich.com/JP/ja/product/sigma/t3125

ピリジン(pyridine) の構造式

  1. ベンゼンの炭素の1つが窒素原子に置き換わった構造 https://ja.wikipedia.org/wiki/%E3%83%94%E3%83%AA%E3%82%B8%E3%83%B3

ピラジン(pyrazine)の構造式

  1. ベンゼンの1,4位の炭素が窒素で置換された構造 https://ja.wikipedia.org/wiki/%E3%83%94%E3%83%A9%E3%82%B8%E3%83%B3

ピリミジン (pyrimidine)の構造式

  1. ベンゼンの1,3位の炭素が窒素で置換されたもの https://ja.wikipedia.org/wiki/%E3%83%94%E3%83%AA%E3%83%9F%E3%82%B8%E3%83%B3

プテリン (pterin)の構造式

(ChemSketchで描画)

  1. ピラジン環とピリミジン環が合わさった形をしており、ピリミジン環上にカルボニル酸素とアミノ基を持つ。https://ja.wikipedia.org/wiki/%E3%83%97%E3%83%86%E3%83%AA%E3%83%B3

10-ホルミルテトラヒドロ葉酸(10-Formyl-tetrahydrofolate)の構造

10-ホルミルテトラヒドロ葉酸は、核酸のプリン基のドノボ合成に使われます。

炭素や窒素のナンバーリング:

 

  1. https://www.researchgate.net/figure/The-structure-of-tetrahydrofolate-In-natural-folates-the-pterin-ring-exists-in_fig1_6192439
  2. https://ja.wikipedia.org/wiki/10-%E3%83%9B%E3%83%AB%E3%83%9F%E3%83%AB%E3%83%86%E3%83%88%E3%83%A9%E3%83%92%E3%83%89%E3%83%AD%E8%91%89%E9%85%B8

 

葉酸サプリ摂取の必要性

メチレンテトラヒドロ葉酸還元酵素遺伝子(MTHFR)のC677T多型のTT型は日本人の約15%を占め、葉酸が欠乏するので国際推奨量400μgを摂取する必要がある 1)。1)香川靖雄、四童子好廣 2008 ゲノムビタミン学(https://www.jstage.jst.go.jp/article/vso/95/4/95_142/_pdf)

参考

 

消化管:胃~小腸(十二指腸、空腸、回腸)~大腸の構造

 

小腸

空腸と回腸とのの間には判然とした解剖学的境界はなくて、口側の2/5が空腸,肛門側の3/5が回腸とされているそうです。

十二指腸の長さ:約30cm

小腸の長さ:約6m(空腸2.5m、回腸3.5m)

参考

  1. http://www.heart-tech.co.jp/kaisetu/2007/04/post_2.html
  2. 十二指腸・小腸の解剖用語 (ガストロ用語集 2023 改訂中) gastro.igaku-shoin.co.jp

大腸

大腸は、大腸は結腸と直腸に大別されます。結腸はさらに、盲腸、上行結腸、横行結腸、下行結腸、S状結腸に区分されています。

五十嵐・志村『改訂 生化学』 正誤表

改訂 生化学 五十嵐脩志村二三夫 編著/山田和彦合田敏尚四童子好廣 共著

  1. 光生館商品ページ https://www.koseikan.co.jp/publish/?id=1282811381-130195

目次

Ⅰ 生体成分の化学と機能―機能を中心に―
序章 生化学と栄養学
第1章 水と生体成分の水素結合
第2章 炭水化物の化学と機能
第3章 脂質の化学と機能
第4章 アミノ酸,タンパク質の構造と機能
第5章 核酸の構造と機能
第6章 細胞
Ⅱ 酵素反応と生体でのエネルギー産生とその利用
第7章 酵素
第8章 生体でのエネルギーの生成と利用
Ⅲ 生体成分の代謝とその調節
第9章 糖質の代謝
第10章 脂肪の代謝
第11章 アミノ酸の代謝
第12章 タンパク質の代謝
第13章 核酸の代謝
第14章 ゲノム生物学
Ⅳ 生体成分の輸送と生体内情報伝達
第15章 生体膜と膜輸送
第16章 血液と尿
第17章 生体と情報

正誤表

ミスプリと思われる点をメモしておきます。

45ページ オキシトシンのアミノ酸配列 Ilu  →   Ile

83ページ 16行目 上の平衡反応ても → 上の平衡反応でも

100ページ 図9-10 NAD →  NAD+

 

可逆反応か不可逆反応かを決めるものは何か

全ての化学反応が可逆反応なのだとしたらなぜ不可逆反応とされる反応があるのか

「全ての化学反応は可逆反応である」という言い方を聞いたことがあります。その一方で、生化学の教科書を読んでいると「この反応は、不可逆反応である」という説明もよく目にします。いったい、どうなっているのでしょうか?

可逆反応とは,どちらの向きにも進む反応のことです。それに対して1つの向きだけに進む反応を不可逆反応といいます。また,平衡とは,物事が一方にかたよることなく、ある安定した状態を保つことですね。化学では,本当は反応が進んでいるのですが,見かけ上反応が止まっている状態を化学平衡とよんでいます。‥ 原理的には,反応物と生成物が存在するとき,すべての反応は可逆反応です。しかし,実際には,平衡状態で生成物の割合が著しく大きい反応系の場合,逆反応は非常に小さく,反応が不可逆的に一方向に進むと考えて差し支えがありません。第111章 化学平衡 osaka-kyoiku.ac.jp/~hiroakio)

上の説明が一番わかりやすくて、混乱を解消してくれるものだと思いました。不可逆の意味は、「平衡状態で生成物の割合が著しく大きい」というわけですね。単純な話です。

水素H2と酸素O2から水H2Oが生成する反応を考えたときに、平衡状態(十分に長い時間がたったとき)の「生成物H2Oの量/反応物水素H2や酸素O2の量」という量比が著しく大きかったとしたら(たとえば水分子1億個:水素(または酸素)1個 など)、一度水分子になったものは1億分の1の確率でしか逆には戻れないということになりそうです。つまり不可逆なんですね。

結局、自分の疑問「可逆反応か不可逆反応かを決めるものは何か」の答えは、平衡定数(=生成物/反応物 という比)だったようです。

すべての化学反応は可逆反応であるともいえるが,化学平衡が著しく一方にかたよっている場合を不可逆反応,そうでない場合を可逆反応として取り扱うのが普通。(可逆反応【かぎゃくはんのう】 百科事典マイペディア コトバンク)

百科事典の説明も、そのまんまでわかりやすいです。

一般に、どんな反応でも十分時間がたてば化学平衡に達し、正反応の速度と逆反応の速度とが等しくなって、見かけ上、反応の進行は止まってしまう。厳密にいえば、すべての反応は可逆反応であり、片方向にしか進まない反応はないわけだが、この平衡が原系もしくは生成系のどちらかに極端にずれている場合は、見かけ上まったく反応が進まなかったり、あるいは全部反応して生成系のみになってしまう。これを不可逆反応という。(可逆反応【かぎゃくはんのう】 日本大百科全書(ニッポニカ) コトバンク)

日本大百科全書(ニッポニカ) の説明が、詳細で具体的でわかりやすいと思いました。同じことを説明した文章でも、自分が一番理解しやすい説明の仕方というものがあるように思います。

マクマリーの化学の教科書を見ていたら、Kが1000を超える場合は、事実上、不可逆反応であり、反応物が全部生成物になるKが10^-3よりも小さい場合は、事実上、反応は起きない。といった説明があり、具体的でわかりやすいものでした。

  1. マクマリー生物有機化学 基礎化学編 第4版(原書7版)211ページ

 

平衡定数は何できまるのか

平衡の偏り(反応物と生成物の比の偏り)で決まるということはわかりましたが、じゃあ、その平衡を決めるものは何なのでしょうか?化学平衡というものは、化学反応ごとに(および実験条件(温度など)ごとに)決まるようです。

平衡状態確率論だけから予測することができる。‥ 平衡状態は “最確分布” そのものである。‥ 反応物と生成物のエネルギー準位を考慮すると、 反応物(A) ⇌ 生成物(B) の化学反応の平衡定数 𝐾=𝑛B 𝑛A は、 *反応物と生成物のそれぞれのエネルギー準位の間隔(∆𝐸A、∆𝐸B) *反応物と生成物の基底状態のエネルギー準位差(∆𝐸AB) によってきまる。(確率できまる化学的平衡状態 cc.iwate-u.ac.jp/~yoshii)

平衡定数は、生成物と反応物のエネルギーの差で決まるとのこと。そういえば物理の統計力学の授業でそんな話があったような気がします。自分の頭の中で結びついていないだけでした。

化学の教科書(マクマリー一般化学(下)第16章 熱力学 エントロピー、自由エネルギーおよび平衡)を見ていたら、書いてありました。

何が平衡定数の値を決めるのであろうか 疑問に答えるために、熱力学について学ぶ 本章の最初に掲げた”何が平衡定数の値を決めるのか”という問題に答えてみよう。その解は、”平衡定数の値を決めるのは、反応の標準自由エネルギー変化(ΔG゜)であり、それは反応物と生成物の標準生成熱と標準モルエントロピーに依存する”ということである。(マクマリー一般化学(下)第16章 384ページ、402ページ)

標準ギブス自由エネルギーから平衡定数を計算

ΔG=ΔG゜’ + RT ln [生成物]/[反応物]

の式で、平衡状態に達したときにはΔGがゼロなので、

ΔG゜’ =- RT ln [生成物]/[反応物]

であり、標準ギブス自由エネルギーΔG゜’がわかれば、平衡定数=生成物]/[反応物] は計算で求まります。五十嵐・志村『改訂 生化学』(光生館)の第8章「生体でのエネルギーの生成と利用」の表8-1には、平衡定数Keqと標準自由エネルギーの関係が表になっていました。R=1.987, T=298(室温25度として)で計算されたものですが、ΔG゜’ =-4.09であれば、Keq=10^3になります。標準自由エネルギーの差が-3である反応は、平衡状態において生成物の方が反応物よりも1000倍多いというわけです。ATPの加水分解の標準自由エネルギー変化は―7.3k cal/molなので、同様に計算すると、平衡時のADP/ATPは10^5になるので、(合計のΔGが負になるように他の反応と共役しないかぎり)不可逆反応だというのも納得です。

生化学の教科書はあまり物理化学的な内容の詳細には踏み込まないものが多いですが、五十嵐・志村『改訂 生化学』はツボを押さえた説明だなあと思いました。他の箇所の説明も、知識の羅列にせずにストーリーを語る意識が強いように感じられるいい本だと思います。図書館で借りた本だとメモを書き込めないので、買うことにしました。

  1. A Primer On Organic Reactions By James Ashenhurst Equilibrium and Energy Relationships ギブスエネルギーΔGと平衡定数との関係を例を挙げて示していてわかりやすい。

反応が進む理由

平衡状態のときの話はそれとして、平衡ではないときは、

ΔG=ΔG゜’ + RT ln [生成物]/[反応物]

の式に従ってΔGが負であれば反応が進むわけです。対数の中身をみると分子の生成物がすぐに次の反応に使われて量が低く抑えられれば、第2項の値は小さくなるのでΔGが負のままでいられます。

 it is almost never necessary to explicitly evaluate ΔG. As we will show in the lesson that follows this one, it is far more convenient to work with the equilibrium constant of a reaction, within which ΔG is “hidden“.

15.4: Free Energy and the Gibbs Function LibreText Chemistry

不可逆性の巷の説明

なぜその化学反応が不可逆なのかをきちんと説明したものが案外少ないように思います。両方向の矢印を引いて、この反応は可逆、一方方向の矢印を描いて、これは不可逆としても全く解説にはなっていませんし。

  1. What makes a chemical reaction reversible or irreversible? https://www.quora.com/What-makes-a-chemical-reaction-reversible-or-irreversible/answer/Aravind-Baby-6 All reactions are reversible in some respect, it is the rate constant of the reaction that determines whether it can be considered irreversible. if A+B —→ C+D is reaction for which forward rate constant is k1 and backward reaction rate constant is k2, then if k1/k2> 10^5, we can say reaction is practically irreversible, and that C and D would be the only components present in system when reaction is completed. Values of k1 and k2 depend upon the activation energy of reaction.

  2. 不可逆反応 ウィキペディア
  3. メタンを完全燃焼させると水と二酸化炭素になりますが、なぜこれは可逆反応をしないのですか? YAHOO!JAPAN知恵袋

尿毒症 uremia とは

 

尿毒症の症状

思考力の低下 怒りっぽい 不眠 頭痛 全身のだるさ 食欲低下 吐き気 口臭 かゆみ 皮膚が黒っぽくなる 血圧が上がる 尿が少なくなる 息苦しい 水がたまる むくむ(5.尿毒症症状とは 国立循環器病センター)

Patients presenting with uremia typically complain of nausea, vomiting, fatigue, anorexia, weight loss, muscle cramps, pruritus, or changes in mental status. The clinical presentation of uremia can be explained by the metabolic disturbances associated with the condition.(Uremia ncbi.nlm.nih.gov)

尿毒症の原因

尿毒症の原因となる毒性物質を、尿毒症性物質と呼ぶ。尿毒性物質は、尿素窒素尿酸クレアチニンなどのタンパク代謝老廃物副甲状腺ホルモン活性酸素などが報告されている。(尿毒症性物質 ヘルスケアプランナー)

Uremia most often occurs due to chronic kidney disease (CKD) that may lead to end-stage renal (kidney) disease (ESKD), but can also occur quickly leading to acute kidney injury and failure (AKI) that is potentially reversible. (uremia Cleveland Clinic)

尿毒症の病態

腎臓病が進行して、腎臓病ステージ4以降になると腎臓の体の老廃物を出すという役割が鈍り体に老廃物が貯まるようになります。尿毒素という老廃物が貯まる状態を尿毒症(にょうどくしょう)と言い、透析が必要になる一歩前の段階で見られる症状です。‥ タンパク質を制限することで、尿毒素の量を減らして尿毒症になる可能性を減らすと考えられています。(タンパク質制限の効果はどれほどあるのか じんぞうの学校)

血中尿素窒素(BUN)

尿素窒素は、タンパク質が利用された後にできる老廃物です。本来は、腎臓の糸球体でろ過され尿中に排泄されますが、腎機能が低下するとろ過しきれず血液中に溜まるため、血液中の尿素窒素の値が高くなります。血中尿素窒素の正常値は20mg/dl以下です。(腎臓病について 全腎協)

尿毒症 uremia に関する参考サイト

  1. uremia  youglish.com