Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism Haiming Cao 1, Kristin Gerhold, Jared R Mayers, Michelle M Wiest, Steven M Watkins, Gökhan S Hotamisligil Cell . 2008 Sep 19;134(6):933-44. https://www.cell.com/cell/fulltext/S0092-8674(08)01014-3 (オープンアクセス)
Marks’ Basic Medical Biochemistry Fifth Edition (2018年)のSECTION I Fuel Metabolismの2 The Fed or Absorptive StateのIII. Fate of GlucoseのB. Glucose Metabolism in Other Tissuesの4. Adipose Tissueの項目を読んでいたら、
Insulin stimulates the transport of glucose into adipose cells as well as into muscle cells. Adipocytes oxidize glucose for energy, and they also use glucose as the source of the glycerol moiety of the triacylglycerols they store (Figure 2.2 ⑩).
Insulin will stimulate glucose uptake in fat cells but does not stimulate fatty acid synthesis in the fat cells (that is unique to the liver) but will lead to enhanced triglyceride synthesis in the fat cells.
Insulin suppresses hepatic glucose output and adipose tissue lipolysis, lowering blood glucose and fatty acid levels. It also increases hepatic lipid synthesis for subsequent storage in adipose tissue and stimulates glucose uptake into fat and muscle.
Fatty acid synthesis occurs in the liver and in adipose cells. The rate-limiting reaction in fatty acid biosynthesis is that of acetyl-CoA carboxylase (ACC) that catalyzes the reaction of acetyl-CoA to malonyl-CoA in two steps
Gerald Litwack PhD, in Human Biochemistry (Second Edition), 2022
論文で研究した対象が人なのか、実験動物なのかに注意を払う必要があります。1971年の論文「Comparative aspects of lipogenesis in mammalian tissues」では、ラットと違って人では脂肪組織でのde novo脂肪酸合成はないと明言しています。しかしその後の論文を見ると、脂肪組織でもde novo lipogeneis (DNL)があるというものもあります(例えば2011年の論文Collins et al.)。人を対象とした実験であっても、測定手法によっては異なる結果が出ることがあるのかもしれませんので、多くの研究者によって得られたコンセンサスは最近どうなっているのかが気になります。歴史的には正反対の結論を述べた論文が存在している状況で、個々の論文だけ見てしまうと判断がつきません。論文を出すときは、これまでの定説を覆す発見だと言ってアピールするのがよくあることなので、イントロにそう書いてあるからといって著者のその主張を鵜呑みにしていいものでもありません。あくまで、根拠となった原著論文一つ一つのデータの実験条件、妥当性や別の解釈の可能性などを吟味する必要があります。その分野の権威がレビュー論文を書いて何かを主張しても、結局は原著論文を自分で吟味して自分を信じたほうが間違いがありません。
Surplus fatty acid synthesis increases oxidative stress in adipocytes and induces lipodystrophy Nature Communications volume 15, Article number: 133 (2024) https://www.nature.com/articles/s41467-023-44393-7 Consistent with our results, adipocyte-specific overexpression of SREBP-1c, a master regulator of lipid synthesis genes including Acly, Acc1 and Fasn, causes congenital lipodystrophy32. SREBP1c has also been suggested to play a key role in the pathogenesis of human lipodystrophies33. In addition, increased FASN expression in human adipose tissues is linked to insulin resistance and inflammation34. Therefore, it is reasonable to believe that the low de novo fatty acid synthesis rate in adipocytes is a protective strategy to avoid oxidative stress-induced cell death. … In summary, our findings uncover the physiological significance of the low fatty acid synthesis rate in adipocytes, identify a potential cause of acquired lipodystrophy and may provide an effective means for lipodystrophy management. このイントロダクションによれば、もともと脂肪組織におけるデノボ脂肪酸合成は低く、亢進するのは異常なときのようです。だとすれば脂肪酸の新規の合成の場は肝臓と覚えて問題なさそうに思えます。
De novo lipogenesis fuels adipocyte autophagosome and lysosome membrane dynamics Nat Commun. 2023; 14: 1362. Published online 2023 Mar 13. doi: 10.1038/s41467-023-37016-8 PMCID: PMC10011520 PMID: 36914626 メソッドのセクションをよんだらマウスを用いた研究でした。イントロを読んでも動物種を区別した書き方をしていなかったため人ではどうなのかが不明瞭です。しかし脂肪組織の脂肪酸新規合成は脂肪組織が貯蔵する中性脂肪にはあまり関与していないという認識が紹介されています。Although the above pathways are well established, adipocyte DNL surprisingly accounts for <2% of adipose TG content; instead, most adipocyte TGs are derived from circulating TGs found in lipoproteins4,8. Supporting the notion that DNL contributes minimally to TG in fat stores, loss of adipocyte Fasn, the rate-limiting enzyme of DNL, has little effect on total lipid accumulation in adipose tissues in mice under normal feeding conditions9.
Quantitative Determination of De Novo Fatty Acid Synthesis in Brown Adipose Tissue Using Deuterium Oxide J Vis Exp. Author manuscript; available in PMC 2024 Mar 5. Published in final edited form as: J Vis Exp. 2023 May 12; (195): 10.3791/64219. Published online 2023 May 12. doi: 10.3791/64219 PMCID: PMC10913692 NIHMSID: NIHMS1964853 PMID: 37246886 この論文は中身を見るとマウスを実験動物してつかったものでしたので、人に関してどうかはわかりません。
Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues Nutrients. 2018 Oct; 10(10): 1383. Published online 2018 Sep 29. doi: 10.3390/nu10101383 PMCID: PMC6213738 PMID: 30274245 Ziyi Song, Alus M. Xiaoli, and Fajun Yang* レビュー論文。However, studies in humans fed with a carbohydrate-rich diet revealed that total fat synthesis in ATs significantly exceeded hepatic DNL [26], suggesting that ATs may be the second major site for fat synthesis. In particular, recent studies show that adipocytes generate adipocyte-specific fatty acids that act to improve systemic insulin sensitivity and decrease inflammation [27,28]. Therefore, adipocyte DNL is an important source of endogenous fatty acids and plays key roles in maintaining systemically metabolic homeostasis.
De Novo Lipogenesis Products and Endogenous Lipokines Mustafa Yilmaz,1 Kathryn C. Claiborn,1 and Gökhan S. Hotamisligilcorresponding author1,2 Diabetes. 2016 Jul; 65(7): 1800–1807. Published online 2016 Jun 12. doi: 10.2337/db16-0251 PMCID: PMC4915584 PMID: 27288005 要旨 In this review, we will update the current knowledge of DNL in white and brown adipose tissues with the focus on transcriptional, post-translational, and central regulation of DNL. We will also summarize the recent findings of adipocyte DNL as a source of some signaling molecules that critically regulate energy metabolism. 本文 De novo synthesis of fatty acids takes place primarily in the liver (2). Under physiological conditions, excess carbohydrates that are not stored as glycogen in hepatocytes are converted into fatty acids and esterified into triglycerides. … studies in humans fed with a carbohydrate-rich diet revealed that total fat synthesis in ATs significantly exceeded hepatic DNL [26], suggesting that ATs may be the second major site for fat synthesis. In particular, recent studies show that adipocytes generate adipocyte-specific fatty acids that act to improve systemic insulin sensitivity and decrease inflammation [27,28].
Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. Smith U., Kahn B.B. J. Intern. Med. 2016;280:465–475. doi: 10.1111/joim.12540. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5218584/
Downregulation of de Novo Fatty Acid Synthesis in Subcutaneous Adipose Tissue of Moderately Obese Women Int. J. Mol. Sci. 2015, 16(12), 29911-29922; https://doi.org/10.3390/ijms161226206
De novo lipogenesis in human fat and liveris linked to ChREBP-β and metabolic health. Eissing, L., Scherer, T., Tödter, K. et al.Nat Commun4, 1528 (2013). https://doi.org/10.1038/ncomms2537
De novo lipogenesis as a metabolic signal transmitter. Lodhi I.J., Wei X., Semenkovich C.F. Lipoexpediency: Trends Endocrinol. Metab. 2011;22:1–8. doi: 10.1016/j.tem.2010.09.002.
Collins et al., De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation, Journal of Lipid Research, Volume 52, Issue 9, 2011, Pages 1683-1692, ISSN 0022-2275, https://doi.org/10.1194/jlr.M012195. イントロダクション The pathway of de novo lipogenesis (DNL) was, until recently, believed to be virtually nonexistent in the human adipocyte (1, 2, 3). However, it is becoming increasingly clear that human adipocytes are capable of synthesis of fatty acids and triacylglycerols (TG) from nonlipid precursors. The expression of key enzymes of DNL, including acetyl-CoA carboxylase-A (ACACA) and fatty acid synthase (FAS), has been demonstrated in human adipose tissue (4, 5). Functionally, around 20% of palmitic acid in adipocyte TG arises from DNL, and although hepatic DNL could account for some of this (exported to the adipocyte in very low density lipoprotein TG), there is an excess that appears to have arisen in the adipose tissue (6). During hypercaloric, high-carbohydrate feeding, whole body DNL (measured by indirect calorimetry) increases considerably (7) and exceeds hepatic DNL (measured with tracers); the remainder may occur in adipose tissue (8).
The Human Fatty Acid Synthase Gene and De Novo Lipogenesis Are Coordinately Regulated in Human Adipose Tissue1 https://www.sciencedirect.com/science/article/pii/S0022316623027554 The Journal of Nutrition Volume 134, Issue 5, May 2004, Pages 1032-1038 Despite its potential importance in obesity and related disorders, little is known about regulation of lipogenesis in human adipose tissue.
Hepatic and whole-body fat synthesis in humans during carbohydrate overfeeding. Aarsland A., Chinkes D., Wolfe R.R. Am. J. Clin. Nutr. 1997;65:1774–1782. doi: 10.1093/ajcn/65.6.1774.
Synthesis of fatty acids and cholesterol by liver, adipose tissue and intestinal mucosa from obese and control patients A Angel, G A Bray Eur J Clin Invest . 1979 Oct;9(5):355-62. doi: 10.1111/j.1365-2362.1979.tb00896.x. PMID: 118029 DOI: 10.1111/j.1365-2362.1979.tb00896.x タイトルを読むとヒトの脂肪細胞で脂肪酸合成があるようです。
Fatty acid synthesis by human adipose tissue M S Patel, O E Owen, L I Goldman, R W Hanson Metabolism . 1975 Feb;24(2):161-73. doi: 10.1016/0026-0495(75)90017-7. The results of this study clearly demonstrate that, although human adipose tissue is able to oxidize glucose to CO2, its ability to incorporate glucose-carbon into long chain fatty acids is negligible. この論文はヒト肥満細胞における脂肪酸de novo合成を否定する論文。
Comparative aspects of lipogenesis in mammalian tissues E Shrago, J A Glennon, E S Gordon Metabolism . 1971 Jan;20(1):54-62. doi: 10.1016/0026-0495(71)90059-x. PMID: 4992541 DOI: 10.1016/0026-0495(71)90059-x Human adipose tissue, unlike that of the rat, has a poor capacity to synthesize fatty acids de novo. The citrate cleavage enzyme is essentially absent from human adipose tissue, and other related lipogenic enzymatic activities are considerably lower and less adaptive than in rat epididymal fat. Studies carried out with monkey liver indicate, indirectly at least, a closer relationship of primate and rat liver. Comparison of lipogenesis in a number of animals indicates that the rat may be a poor experimental model to study the carbon pathway and regulation of lipogenesis. ヒト肥満細胞における脂肪酸de novo合成を否定する論文。この論文では、人間と他の実験動物とでは大きな違いがあると述べています。
Fatty Acid Synthesis in Human Adipose Tissue. (1969) イントロダクションにおけるリサーチクエスチョンの提示部分:These observations raise a question concerning the pathway of fatty acid biosynthesis de novo, or indeed, whether or not it occurs at all in human adipose tissue. https://www.jbc.org/article/S0021-9258(18)83461-5/pdf この論文は人の肥満細胞が脂肪酸合成をすると結論した論文
Albumin acts as main fatty acid binding protein in extracellular fluids. Plasma albumin possesses about 7 binding sites for fatty acids with moderate to high affinity, enhancing the concentration of fatty acids by a several orders of magnitude.
https://pubmed.ncbi.nlm.nih.gov/19745557/
Essential facts & functions of Albumin.#mls#medilabacademy#albumin MediLab Academy チャンネル登録者数 8950人
低アルブミン血症 Hypoalbuminemia
Hypoalbuminemia – Functions of Albumin in the Body + Pathophysiology of Hypoalbuminemia Rhesus Medicine チャンネル登録者数 21.8万人
The ribosome catalyzes protein synthesis in all cells by coupling the decoding of messenger RNA by the small ribosomal subunit with peptide bond formation by the large ribosomal subunit.
The Cell: A Molecular Approach. 2nd edition. https://www.ncbi.nlm.nih.gov/books/NBK9939/ The most prominent substructure within the nucleus is the nucleolus (see Figure 8.1), which is the site of rRNA transcription and processing, and of ribosome assembly.
The term ‘organization centre’ was first introduced by Hans Spemann (Spemann and Mangold, 1924)
the blastopore lip of the early gastrula of the newt Triturus taeniatus had the ability to cause the formation of a full axis when transplanted onto the opposite side of a similarly staged embryo of Triturus cristatus, a different unpigmented species.
the 1924 report could discern between the host and the graft by pigment differences, which revealed the important point that the ectopic tissue developed from the host tissue.
On the nature and function of organizers Alfonso Martinez Arias* and Ben Steventon* Development. 2018 Mar 1; 145(5): dev159525. PMCID: PMC5868996
Hilde Mangold: Original microscope slides and records of the gastrula organizer experiments Wolfgang Driever a b, Jochen Holzschuh a, Luise Sommer c, Roland Nitschke b d, Angela Naumann b d, Jenny Elmer c 1, Peter Giere c Cells & Development 28 February 2024, 203909
他の動物種でも同様の実験が行われて同様の結果が得られたことから、「誘導」という概念が確立しました。
the organizer is responsible for neural induction
the organizer dorsalizes the mesoderm
Induction into the Hall of Fame: tracing the lineage of Spemann’s organizer Richard Harland Author and article information 15 OCTOBER 2008 Development (2008) 135 (20): 3321–3323.
Spemann-Mangold organizer and mesoderm induction Makoto Asashima, Yumeko Satou-Kobayashi Cells & Development Available online 1 February 2024, 203903
上の図では中胚葉が外胚葉に働きかけて神経誘導を行うことが模式的に示されています。
Introducing the Spemann-Mangold organizer: experiments and insights that generated a key concept in developmental biology Int. J. Dev. Biol. 45: 1-11 (2001) PDF
Spemann and Mangold (Spemann and Mangold, 1924) provided the initial insight showing that transplantation of dorsal lip mesoderm of the gastrulating amphibian embryo would induce an ectopic secondary axis that included a central nervous system (CNS). This led to the view that neural inducers emanate from dorsal mesoderm, a region also called Spemann’s organizer.
neural induction may start very early in development with signals mediated by the β-Catenin pathway.
Neural Induction in the Absence of Mesoderm: β-Catenin Dependent Expression of Secreted BMP Antagonists at the Blastula Stage in Xenopus Oliver Wessely,1 Eric Agius,1,2 Michael Oelgeschläger, Edgar M. Pera, and E. M. De Robertis* Dev Biol. 2001 Jun 1; 234(1): 161–173. doi: 10.1006/dbio.2001.0258 PMCID: PMC3039525 NIHMSID: NIHMS43280 PMID: 11356027
Head organizer: Cerberus and IGF cooperate in brain induction in Xenopus embryos agmur Azbazdar a, Edgar M. Pera b, Edward M. De Robertis a Cells & Development Available online 16 December 2023, 203897 Spemann later found that early dorsal blastopore lips induced heads and late organizers trunk-tail structures. Identifying region-specific organizer signals has been a driving force in the progress of animal biology. Head induction in the absence of trunk is designated archencephalic differentiation. Two specific head inducers, Cerberus and Insulin-like growth factors (IGFs), that induce archencephalic brain but not trunk-tail structures have been described previously.
Neural and Head Induction by Insulin-like Growth Factor Signals Edgar M. Pera, Oliver Wessely, Su-Yu Li, E.M. De Robertis Developmental Cell Volume 1, Issue 5, November 2001, Pages 655-665
FGF activity induces both ERNI [18,36] and Geminin (this study) in the epiblast.
Geminin binds to the chromoshadow-binding domain of Brm, displacing HP1α (Figure 4G).
the interaction of ERNI with Geminin recruits the transcriptional repressor HP1γ, thus continuing to prevent premature expression of Sox2 in the epiblast (Figure 7E).
FGF is required for both mesodermal [51–54] and neural induction [36,55,56]. 同じシグナルを受けて異なる分化をとげるメカニズムは、受けて側のタイミングや場所の違いによると考えられる
BERT is up-regulated within the neural plate, where it binds to both ERNI and Geminin and displaces ERNI-HP1γ complexes away from Brm, freeing the latter to activate N2 and thus Sox2 expression (Figure 9M).
We propose that BERT disrupts the interaction between Geminin and ERNI, displacing HP1γ from the N2 enhancer and thus allowing Geminin/Brahma(Brm) to induce Sox2 expression.(Fig.9M)
FGF signaling activates ERNI as well as Sox3 and Geminin expression in the epiblast.
A Mechanism Regulating the Onset of Sox2 Expression in the Embryonic Neural Plate 2008年 https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0060002
Molecular Biology of the CellVol. 18, No. 6ArticlesFree Access The Activity of Pax3 and Zic1 Regulates Three Distinct Cell Fates at the Neural Plate Border This is the final version – click for previous version Chang-Soo Hong, and Jean-Pierre Saint-Jeannet Marianne Bronner-Fraser, Monitoring Editor Published Online:4 Apr 2007 https://doi.org/10.1091/mbc.e06-11-1047
分子シグナリング
the neural inducers, Noggin, Chordin, and Follistatin emanate from Spemann’s organizer.3,4,5
Noggin, Chordin, and Follistatin directly bind to bone morphogenetic proteins, namely, BMP2/4/7, in the extracellular space and act as antagonists to block these BMPs from binding to the BMP receptor.6
the blockade of BMP signaling inhibits the phosphorylation of the carboxyl-terminal serine residues of the Smad1 protein, which is an intracellular mediator of the BMP signal, preventing the downstream genes of BMP signals from being activated.
the inhibition of the BMP signal induces the expression of a series of transcription factors, which in turn activate the downstream transcriptional network to further promote neural differentiation.
FGF promotes the phosphorylation of the intermediate linker domain of the Smad1 protein, instead of its carboxyl-terminal domain, and restricts the Smad1 activity.7
the combination of BMP inhibitors and FGF is essential for directing naive cells toward the neural fate.
In mouse embryos, Chordin and Noggin homologues emanate from the node, or the anterior portion of the primitive streak, and t
Chordin/Noggin double mutants exhibit severe forebrain malformation at early embryonic stages,11,12 but the development of the posterior nervous system in the Chordin/Noggin double mutant mice is relatively normal (両生類のように神経誘導すべてが抑制されるのとは事情が異なる。
哺乳類では、the anterior and posterior neural cells are already separated at the epiblast stage, and this differentiation progresses independently.13,14
The Organizer and Its Signaling in Embryonic Development Vijay Kumar,1 Soochul Park,2 Unjoo Lee,3,* and Jaebong Kim1, J Dev Biol. 2021 Dec; 9(4): 47. Published online 2021 Nov 1. PMCID: PMC8628936
Cell communication with the neural plate is required for induction of neural markersby BMP inhibition: evidence for homeogenetic induction and implications forXenopus animal cap and chick explant assays Claudia Linkera,⁎,1, Irene De Almeidaa, Costis Papanayotoua, Matthew Stowera, Virginie Sabadob,Ehsan Ghorania, Andrea Streitb, Roberto Mayora, Claudio D. Stern Developmental Biology 327 (2009) 478–486 ResearchGate
BMPとTGF-beta signaling
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGF-β) superfamily. BMPs were originally identified from bone matrix using an ectopic bone formation assay.
About 60 TGF-β family members have been identified so far7 with two general branches: (i) BMP/growth and differentiation factor (GDF) and (ii) the TGF-β/activin/nodal branch/mullerian-inhibiting substance or anti-mullerian hormone.8
TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation Rahman et al., Bone Res. 2015; 3: 15005. PMCID: PMC4472151
The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4 Fainsod et al., Mechanisms of Development Volume 63, Issue 1, April 1997, Pages 39-50 Mechanisms of Development https://www.sciencedirect.com/science/article/pii/S0925477397006734
The transforming growth factor-beta (TGF-β) family of cytokines, including TGF-β, bone morphogenic proteins (BMPs), and activin/inhibin, plays crucial roles in embryonic development, adult tissue homeostasis and the pathogenesis of a variety of diseases.
The highly conserved core of the canonical TGF-β/BMP signaling is a simple linear cascade that involves the TGF-β/BMP ligands, two types of receptors (type I and II) and the signal transducers, Smads.
On activation, the receptor complex phosphorylates the carboxy-terminus of receptor-regulated Smad proteins (R-Smads), including Smad1, 5 and 8 for BMP signaling and Smad2 and 3 for TGF-β signaling.
Activated R-Smads interact with the common partner Smad, Smad4, and accumulate in the nucleus, where the Smad complex directly binds defined elements on the DNA and regulates target gene expression together with numerous other factors [1–3].
Signaling cross-talk between TGF-β/BMP and other pathways Guo and Wang Cell Res. 2009 Jan; 19(1): 71–88. PMC3606489
We have identified a new member of the transforming growth factor-beta (TGF-beta) superfamily, growth/differentiation factor-10 (GDF-10), which is highly related to bone morphogenetic protein-3 (BMP-3).
Growth/differentiation factor-10: a new member of the transforming growth factor-beta superfamily related to bone morphogenetic protein-3 N S Cunningham 1, N A Jenkins, D J Gilbert, N G Copeland, A H Reddi, S J Lee Growth Factors . 1995;12(2):99-109. doi: 10.3109/08977199509028956. https://pubmed.ncbi.nlm.nih.gov/8679252/
Bone morphogenetic protein signaling: the pathway and its regulation Takuya Akiyama, Laurel A Raftery, Kristi A Wharton Author Notes Genetics, Volume 226, Issue 2, February 2024, iyad200, https://doi.org/10.1093/genetics/iyad200
BMP signaling during craniofacial development: new insights into pathological mechanisms leading to craniofacial anomalies Hiroki Ueharu and Yuji Mishina Front Physiol. 2023; 14: 1170511. 2023 May 18.