がん遺伝子とは

がんの原因は、細胞が無節操に増殖してしまうことにあります。つまり、細胞増殖の制御を司るタンパク質がもしDNAの変異により常時活性型になったりすると、常に細胞増殖シグナルが出続けてがんになってしまうというのが、発がんの一つのシナリオです。

がん遺伝子ras

がん遺伝子とは、変異したときにがん化を促進するような遺伝子のことで、代表的なものにrasがあります。rasには3種類あり、k-ras, h-ras, n-rasの3つの遺伝子があります。

  1. Drugging the undruggable Ras: mission possible? 2014
  2. 16 APRIL 2015 がん遺伝子産物Rasへの再挑戦  発がんに大きく関わるRasタンパク質。これを標的とする治療薬は、30年に及ぶ探求にもかかわらずまだ見つかっていない。
  3. 最多の発がん遺伝子を標的とした治療応用に期待 RAS遺伝子変異による発がんに関わる新たなメカニズムとその弱点を発見し核酸医薬による新規治療を提唱ーNature誌に論文発表ー2022月3月3日国立研究開発法人国立がん研究センター 2021年に初めて米国で、日本では2022年に一部のKRAS遺伝子変異(KRAS G12C変異:コドン12番目のグリシン[G]がシステイン[C]に変わる)のあるがんの増殖を特異的に阻害する画期的な薬が承認されました。
  4. RAS遺伝子変異(KRAS及びNRAS) 中外製薬 KRAS遺伝子の変異は膵がんの95%以上に確認されるほか、大腸がん、肺がん、多発性骨髄腫、子宮体がんなどでも多く確認されます。NRAS遺伝子の変異は、悪性黒色腫や多発性骨髄腫で多く確認されています。
  5. 遺伝子変異に合わせたがん治療とは ー 代表的な遺伝子変異 RAS遺伝子変異とは 中外製薬
  6. Targeting the Mitogen-Activated Protein Kinase RAS-RAF Signaling Pathway in Cancer Therapy 2012年 In normal quiescent cells, Ras is bound to GDP and is inactive (“off” state), while upon extracellular stimuli, Ras bind to GTP (“on” state), which has an extra phosphate group than GDP.

 

MAPK経路を英語で説明する5個の文例(論文)RAS-RAF-MEK-ERK

MAPK経路は、その名Mitogen-activated protein kinaseが示す通り、細胞外からのシグナル(増殖因子など)を受けた細胞が、細胞増殖に向かうための細胞内情報伝達経路として使われるほか、細胞の分化においても働くことがあることが知られています。また、ストレス応答の際の細胞内情報伝達経路としても働きます。細胞増殖、細胞分化、ストレス応答といった全くことなる生命現象を状況に応じて同じ経路が担っているのは不思議に思います。

MAPKシグナル経路の研究

MAPK(マップキナーゼ)経路の研究は、日本人研究者による貢献も大きかった分野です。

  1. 後藤由季子教授が2020年秋の 紫綬褒章を受章 「MAPキナーゼ経路」の同定は、生命体の成り立ちを理解するという生命科学の基礎として根源的な発見であったと同時に、「MAPキナーゼ経路」の異常活性化が癌化につながることから医学的社会的インパクトも大きなものでした。
  2. 分化能を失った神経系前駆細胞が、再びニューロンを作り出した! 細胞は、外からの情報に従ってMAPキナーゼ経路を活性化させ、核内にシグナルを伝えます。私は、研究の過程で、このシグナルが細胞の増殖だけでなく、分化にも関わっていることを見出しました。同じシグナル伝達経路を利用しながら、細胞が状況に応じて巧妙に応答を変えることに、驚きと感動を覚えました。

MAPKは何の略?

MAPK(マップキナーゼ)が何の略かというと、microtuble-associated protein kinase(MAPを基質とするキナーゼ)の略だと自分は理解していたのですが、今ではmitogen-activated protein kinaseの略だとされているようです。

Mitogen-activated protein kinases, originally known as microtubule-associated protein (MAP) kinases, are activated in response to a variety of stimuli. ‥ Initially, MAP kinase stood for microtubule-associated protein kinase because microtubule-associated proteins such as MAP2 are excellent substrates of MAP kinases (23). (Parkin Protects Dopaminergic Neurons against Microtubule-depolymerizing Toxins by Attenuating Microtubule-associated Protein Kinase Activation(2009))

教科書によってはMAPKのことをMAPキナーゼと書いてあるものがありますが、これはMAPを基質とするキナーゼという初期の研究の名残りでしょう。新しい略からすると、言葉の切れ目としては、Mitogen-activagedプロテインキナーゼということのはずですから。古い論文を見るとmitogen-activated MAP kinaseという言い方もされています。これは別々の研究者が別々の動物種で研究を行っていて、実は同一の細胞内情報伝達経路を調べていたという歴史的事情によるものです。

The protein kinase MAP kinase, also called MAP2 kinase, is a serine/threonine kinase whose activation and phosphorylation are induced by a variety of mitogens, and which is thought to have a critical role in a network of protein kinases in mitogenic signal transduction. ‥ Here we show that a Xenopus kinase, closely related to the mitogen-activated mammalian MAP kinase, is phosphorylated and activated during M phase of meiotic and mitotic cell cycles, and that the interphase-metaphase transition of microtubule arrays can be induced by the addition of purified Xenopus M phase-activated MAP kinase or mammalian mitogen-activated MAP kinase to interphase extracts in vitro.(In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase(Nature paper in 1991))

  1. A Mitogen-activated Protein (MAP) Kinase Activating Factor in Mammalian Mitogen-stimulated Cells Is Homologous to Xenopus M Phase MAP Kinase Activaton(JBC paper in 1992)(PDF) . Two related MAP kinases of 43 kDa (ERK1) and 41 kDa (ERK2) are activated in mammalian cells.

ERKは何の略?

ERKは、extracellular signal‐regulated kinase です。その他の登場人物も挙げておきます。

SOS:son of sevenless

Grb2:growth factor receptor bound protein 2

ウィキペディアをみるとMAPK経路は哺乳類では細胞増殖におけるシグナル経路として有名ですが、植物ではストレス応答の際に使われる細胞内情報伝達系のようです。

Since ERK1 and its close relative ERK2 (MAPK1) are both involved in growth factor signaling, the family was termed “mitogen-activated“. With the discovery of other members, even from distant organisms (e.g. plants), it has become increasingly clear that the name is a misnomer, since most MAPKs are actually involved in the response to potentially harmful, abiotic stress stimuli (hyperosmosis, oxidative stress, DNA damage, low osmolarity, infection, etc.). (Mitogen-activated protein kinase Wikipedia)

MAPK経路のことは、MAPKの哺乳類バージョンがERKなので、MAPK/ERK経路とも呼ばれます。ここのスラッシュ(/)の意味は、「同一のものに対する別称」ということです。もしくは、Ras-Raf-MEK-ERK経路とも呼ばれます。

  1. MAPK/ERK pathway (Wikipedia)

ERKはMAPK、MEKはMAPKK(マップキナーゼをリン酸化するキナーゼ)、RafはMAPKKK(マップキナーゼをリン酸化するキナーゼをリン酸化するキナーゼ)、RasはRafを活性化する因子です。研究の過程で次々とMAPKをリン酸化する酵素MAPKKをリン酸化する酵素MAPKKKが見つかっていったのは、圧巻でした。

自分は今まで知りませんでしたが、場合によってはMAPKKKK(MAP4K)なるものまであるみたいです。

These cascades transmit signals through sequential activation of three to five layers of protein kinases known as MAPK kinase kinase kinase (MAP4K), MAPK kinase kinase (MAP3K), MAPK kinase (MAPKK), MAPK and MAPK-activated protein kinases (MAPKAPK). (ERK/MAPK signalling pathway and tumorigenesis(2020))

 

細胞外からシグナルがきて受容体に結合し、エフェクター分子を経て、MAPK経路の分子が次々とリン酸化により活性かされていき最後は遺伝子発現制御に至るこの多段階のステップを英語でどのように簡潔に文章表現できるのでしょうか。いくつかの例文を見ていきたいと思います。

論文例1

論文:RAF1 amplification drives a subset of bladder tumors and confers sensitivity to MAPK-directed therapeutics (2021)

  1. RAF is activated by small GTPases of the RAS superfamily, including HRAS, NRAS, and KRAS.
  2. Activated RAF (MAP3K) activates MEK (MAP2K),
  3. which in turn activates ERK (MAPK).

論文例2

別の例。これはMAPKから始めて、遡って説明していますが、順序が入り乱れていて、多少冗長な文章にも思えます。

論文 Regulation of Human Immunodeficiency Virus Type 1 Infectivity by the ERK Mitogen-Activated Protein Kinase Signaling Pathway(1999)

  1. The mitogen-activated protein (MAP) kinases ERK1 and ERK2 (also known as p44/42 MAPK and hereafter referred to as MAPK) are central components of signal transduction pathways activated by diverse extracellular stimuli.
  2. MAPK itself is activated by phosphorylation on threonine and tyrosine residues by the MAPK kinase (also known as MEK).
  3. The best understood mechanism for activation of MAPK is via activation of Ras by growth factor receptors or tyrosine kinases.
  4. Activation of Ras induces Raf-1 targeting to the membrane,
  5. leading to activation of Raf,
  6. which then phosphorylates and activates MEK.
  7. Ras-independent mechanisms have also been implicated in activation of MAPK.
  8. Activation of MAPK occurs during the G0/G1 transition and may be required for progression through the cell cycle.

論文例3

別の論文。ここではRASが主役で書かれています。RAS-RAF-MEK-ERKのカスケードですが、途中のMEKが省かれています。

論文 Inhibition of Ras/Raf/MEK/ERK Pathway Signaling by a Stress-Induced Phospho-Regulatory Circuit(2016)

  1. The three-tiered RAF/MEK/ERK kinase cascade functions as an essential effector cascade required for Ras GTPase signaling in normal and disease states.
  2. Signal transmission through the cascade begins when members of the Raf family are recruited from the cytosol to the plasma membrane, where they bind directly to active GTP-Ras.
  3. Binding to Ras induces conformational changes that promote Raf dimerization,
  4. which in turn mediates kinase activation through an allosteric mechanism that often involves B-Raf/C-Raf heterodimers.
  5. Once activated, Raf initiates the sequential phosphorylation events that ultimately result in ERK activation
  6. and the downstream phosphorylation of key substrates required for a specific response.

論文のフォーカスがどこかによって、書き方ががらりと変わる例でした。

さてRasはそもそもどうやって活性化するのかという点にこれまで触れてきませんでしたが、Rasの上流のプレーヤーたちまで含めた説明をしている論文を紹介します。チロシンキナーゼ(protein tyrosine kinase;PTK)活性を持つ受容体の種類は、チロシンキナーゼ型受容体と呼ばれますが、リガンドが結合するとチロシンキナーゼ型受容体は自らをリン酸化します。するとSH2ドメインを持つアダプター分子であるGrb2が、受容体に結合します。Grb2には、Ras特異的グアニンヌクレオチド交換因子(Ganinenucleotide exchange factor; GEF)の一つであるSOSが結合します。RasはGDPと結合した不活性状態にもともとありますが、Grb2-SOS複合体にRas-GDPが結合すると、GDPがGTPに交換されて、活性型すなわちRas-GTPになります。

  1. rasの活性のオンとオフはどのように制御されているのか?GEFとGAPの役割

このあたりまで説明した論文を紹介します。

論文例4

論文 Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway (2009)

  1. Typically, it is initiated by the growth-factor-induced recruitment of the SOS-Grb2 complex to the plasma membrane.
  2. The SOS-Grb2 complex catalyzes the transformation of an inactive GDP-bound form of Ras (Ras-GDP) into its active GTP-bound form (Ras-GTP).
  3. Ras-GTP binds the Raf-1 kinase with high affinity,
  4. which induces the recruitment of Raf-1 from the cytosol to the cell membrane.
  5. Activated Raf-1 phosphorylates and activates mitogen-activated protein kinase kinase (MEK),
  6. a kinase that in turn phosphorylates and activates mitogen-activated protein kinase (MAPK).

次の論文での説明は、起こる過程を記述するのに、番号を振って、セミコロンで続けることにより、1文で書ききっています。

論文例5

論文 Optogenetic actuator – ERK biosensor circuits identify MAPK network nodes that shape ERK dynamics(2022年)

  1. Upon binding of their cognate growth factors (GFs), RTKs activate a complex signaling cascade with the following hierarchy:
  2. (i) recruitment of adaptor molecules such as GRB2 ;
  3. (ii) control of the activity of RAS GTPases through Guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs);
  4. (iii) triggering of a tripartite RAF, MEK, ERK kinase cascade
  5. that is further regulated by a variety of binding proteins; and
  6. (iv) ERK‐mediated phosphorylation of a large number of substrates.

 

4種類のMAPK経路

細胞内情報伝達機構は複雑で、登場人物が非常に多くて、しかも動物種や発見者の研究グループなどによって命名方法が勝手気ままで統一性がないため、理解するのが本当に大変です。MAPK経路と一言でいっても、実際にはいろいろな種類があるようです。元祖MAPKと言えば、MAPK/ERK1/ERK2のことですが、MAPKの種類によって4つに分類されています。

Four MAPK cascades have been defined based on the components in the MAPK layer: ERK1/2, c-Jun N-terminal kinase (JNK), p38 MAPK and ERK5. (ERK/MAPK signalling pathway and tumorigenesis(2020))

MAPK経路の他の経路とのクロストーク

細胞内情報伝達機構は様々な種類がありますが、いろいろなレベルで互いにクロストークしているのが普通です。MAPK経路の役割は多彩です。

The MAPK/extracellular signal-regulated kinase (ERK) pathway is a convergent signaling node that receives input from numerous stimuli, including internal metabolic stress and DNA damage pathways and altered protein concentrations, as well as through signaling from external growth factors, cell-matrix interactions, and communication from other cells.(The MAPK pathway across different malignancies: A new perspective 2014年)

 

その他の参考論文

  1. Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells 2013年
  2. Regulation of Small GTPases by GEFs, GAPs, and GDIs 2013年

 

JAK-STAT経路を英語で説明する5個の文例(論文)

細胞情報伝達経路にはいろいろありますが、その中の一つが、JAK/STAT経路と呼ばれるもの。サイトカイン(インターロイキン2など)や増殖因子がその受容体に結合すると、受容体はリガンドとの結合により二量体になります。すると受容体の細胞質の領域にJAKタンパク質が結合します。JAKはチロシンリン酸化酵素で、近傍のJAKのチロシン残基をリン酸化します。リン酸化されたJAKは受容体のチロシン残基をリン酸化します。すると、受容体のリン酸化チロシンの部位にSTATタンパク質が結合します。すると、受容体に結合したSTATの特定のチロシン残基が、JAKによりリン酸化されます。リン酸化されたSTATは2量体をつくり細胞質から核へと移行してDNAの特定の領域に結合し、遺伝子発現制御に関与します。

箇条書きにしてみると、

  1. リガンドが受容体に結合
  2. 受容体が2量体化
  3. JAKが受容体に結合
  4. JAKが近傍のJAKをリン酸化
  5. リン酸化JAKが受容体をリン酸化
  6. 受容体のリン酸化部位にSTATが結合
  7. リン酸化JAKがSTATをリン酸化
  8. リン酸化STATが2量体をつくって核へ移行
  9. リン酸化STAT2量体がDNAに結合して遺伝子発現制御

というわけ。

参考資料

  1. リッピンコット免疫学原書2版 78ページ

JAK-STAT経路を英語で説明する5個の文例(論文)

細胞内情報伝達経路を英語で説明するのは、なかなか難しいです。あれがこうなると、これがこうして、それによってこれがこうなって、結果として何がどうなってどうするみたいなことを英語で延々と説明しなければなりません。どんなふうに説明すればいいのか、例文を集めておきたいと思います。全部真似するのはアウトですが、部分的にこの言い回しは使わせてもらうというのはアリでしょう。

以下、シグナリングの過程(受容体への結合、リン酸化、核移行など)ごとに区切って箇条書きにしました。そのため文を必要に応じて分解してあります。

下の論文では、要所要所に全体像を説明する文や細かいファミリーメンバーの説明が織り交ぜられています。

Roles for the interleukin-4 receptor and associated JAK/STAT proteinsin human articular chondrocyte mechanotransduction(2006)

  1. IL4 exerts its biological actions by binding to a heterodi-meric receptor complex, the IL4 receptor (IL4R), present on the cell surface.
  2. Two functional IL4R subtypes have beenidentified; the Type I IL4R consists of IL4Ra and common gamma (gc) subunits whilst the Type II IL4R is composed ofIL4Ra and IL13Ra1 subunits.
  3. Binding of IL4 to IL4Ra sub-unit
  4. leads to receptor dimerisation by recruitment of the second receptor subunit
  5. and the subsequent activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway.
  6. The JAKs are cytoplasmic receptor-associated tyrosine kinases that were first implicated in cytokine-stimulated signalling pathways.
  7. To date four members of the JAK family have been identified: JAK1,JAK2, JAK3 and Tyk2.
  8. In contrast to JAK1, JAK2 and Tyk2,which are ubiquitously expressed and can associate with a number of cytokine receptor subunits, JAK3 has been shown to be selectively associated with the gc subunit.
  9. Receptor dimerisation is associated with autophosphorylation and transphosphorylation of JAKs.
  10. Activated JAK proteins further phosphorylate the IL4R,
  11. allowing recruitment of SH2 domain-containing STATs,
  12. which are subsequently phosphorylated by the activated JAKs.
  13. Once phosphorylated, STATs form homo or heterodimeric complexes
  14. that translocate to the nucleus
  15. where they can regulate transcription of specific genes.
  16. STAT6 functions as a critical mediator of IL4-stimulated gene activation.

文の構造やキーワードを見てみます。

A(過程) leads to B (過程)by C (過程)and subsequent D(過程)

A(過程)is associated with B(過程)

A(分子)further posphorylate(動作) B(分子), allowing C(過程)

A(分子)動詞(動作)that 動詞(過程)where 動詞(役割)

leads toやallowingは次の動作が起こることを説明するのに頻出するキーワード。subsequentやfurtherといった形容詞や副詞も次の順番を表す言葉。興味深いのは、that節やwhere節を使うことにより、順に起こる過程を説明できることだと思います。

別の論文を紹介します。

The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells(2017 )の説明(一部省略しています)

  1. Type I- and II receptors are constitutively associated with JAKs.
  2. The binding of ligand (cytokine) to its receptor
  3. causes receptor dimerization
  4. and subsequently, JAKs are activated following close proximity.
  5. These activated JAKs initiate trans-phosphorylation on specific tyrosine residues (also named transactivation),
  6. generating docking sites for recruitment of latent cytoplasmic transcription factors known as STATs.
  7. Unphosphorylated STATs (Off) reside in the cytoplasm.
  8. If phosphorylation of STATs (On) and STAT dimerization occur upon activation of JAKs,
  9. phosphorylated STATs abandon docking sites on the receptors.
  10. Therefore, they translocate to the nucleus
  11. and bind to specific DNA sequences
  12. either to activate or suppress gene transcription.

変化に富んだ語彙で、読みやすいです。

A(過程) causes B(過程) and subsequently C(過程)

A (分子)initiate B(過程), generating C(状態)

A (動作 文)to B(動詞 家庭)

ここで特徴的だと思ったのは、「結果」を表すto不定詞の用法が使われている点です。to不定詞も、ああなったら、こうなったという一連の流れを作るのに使える表現です。

もう一例。

The molecular details of cytokine signaling via the JAK/STAT pathway(2018)

  1. Each cytokine binds to a specific receptor on the surface of its target cell.
  2. These receptors contain intracellular domains which are constitutively associated with members of the JAK (Janus Kinase) family of tyrosine kinases.
  3. JAKs are inactive prior to cytokine exposure
  4. however binding of cytokine to its receptor induces their auto-activation by transphosphorylation.
  5. Once activated, JAKs phosphorylate the intracellular tails of the receptors on specific tyrosines
  6. which in turn act as docking sites for members of the Signal Transducers and Activators of Transcription (STAT) family of transcription factors.
  7. Receptor-localized STATs are then phosphorylated by JAK
  8. which leads to their disassociation from the receptor and translocation to the nucleus,
  9. where they drive the expression of cytokine-responsive genes,
  10. often leading to proliferation and/or differentiation.

これも見事に情報を含ませて書かれています。

in turnやthenといった語句が、2つの事柄の順序関係を示すのに使われています。変化を表すための、lead toはこのての文章には必須の語句ですね。

また別の論文の例も紹介します。

Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes (2018)

  1. The Jak kinases, associated with γc (Jak3), IL-4Rα (Jak1), or IL-13Rα1 (Tyk2, Jak2),
  2. will auto- and cross-phosphorylate each other,
  3. resulting in their activation and the subsequent tyrosine (Y) phosphorylation of critical Y residues in IL-4Rα chain.
  4. Upon phosphorylation, the Y residues in the intracellular domains of IL-4Rα serve as docking sites for SH domains of intracellular signaling molecules.
  5. STAT6 and IRS molecules, in particular, become activated on these tyrosine residues in response to the activation of the type I IL-4 receptor.
  6. Once activated, STAT6 molecules homodimerize
  7. and translocate to the nucleus
  8. where they bind specific accessible DNA sequences, for example, on the CD23 promoter in human B-cells and on the arginase1 enhancer in mouse macrophages (25, 26).

この論文ではかなり細かい情報まで含めて書かれていました。細胞外からのリガンドから書き始めるとだらだらと長くなりがちですが、このように情報伝達経路の途中に位置するJAKから書き始めることにより、簡潔な表現が可能になっているように思います。

resultingやsubsequent、become ~ in response to、といた言葉が使われています。

もっと簡潔に表現した別の論文も紹介。

The JAK/STAT signaling pathway: from bench to clinic(2021)

  1. JAKs are noncovalently associated with cytokine receptors,
  2. mediate tyrosine phosphorylation of receptors,
  3. and recruit one or more STAT proteins.
  4. Tyrosine-phosphorylated STATs dimerize
  5. and are then transported into the nucleus through the nuclear membrane
  6. to regulate specific genes

この論文の表現は、非常に簡潔ですが、情報がギューッと圧縮された印象を受けます。ここまで簡潔に書けるものなのかと感銘を受けました。

mediate、then、to 不定詞(結果用法)程度しか使っていなくてあとは普通に何が起こるのかを示す動詞を使っているだけなのですが、実に簡潔にまとめています。

その他の参考論文

  1. The JAK-STAT Pathway at Twenty

 

肝臓の役割、膵臓の役割、胆嚢の役割、脾臓の役割、腎臓の役割、心臓、肺、胃、小腸、大腸、膀胱、リンパ系など

五臓六腑という言い方ありますが、五臓とは、肝臓心臓脾臓肺臓腎臓で、六腑とは、小腸大腸膀胱三焦(さんしょう)のことだそうです。五臓の中に膵臓が入っておらず、見落とされていたみたいです。三焦というのは実際には存在しませんが、リンパ系を指すという解釈もあるそう。腑は飲食物の通り道ということのようです。

  1. 第11回 発覚!五臓六腑にはアノ臓器が含まれていなかった

脾臓(spleen)の役割・働き

  1. 脾臓は、リンパ節や粘膜リンパ組織とともに二次リンパ器官/二次リンパ組織と呼ばれる。は、免疫細胞が病原体などに反応してそれらを排除する場所。末梢最大のリンパ装置。抗体(免疫グロブリン)を産生する形質細胞が多数存在しており、抗体の産生場所になっている。
  2. 脾臓は、血液ろ過・浄化装置としての役割ももつ。血液の中の病原菌、死んだ赤血球、などが免疫系の細胞(白血球)などの働きにより除かれる。
  3. 脾臓で、古くなった赤血球を分解する。古くなった赤血球のヘモグロビンから鉄分を取り出し骨髄に送る。また、ヘモグロビンのヘムをビリルビンに変えて、肝臓に送る。

ちなみに、門脈とは、腹部諸臓器(大腸,小腸,膵臓,脾臓など)の静脈から肝臓に流れる血管の総称.

肝臓の役割・働き

肝臓は再生能力が大きい臓器で半分以上を切除しても元の大きさにまで戻るのだそうです。また、肝機能が低下した場合に自覚症状が出ないため「沈黙の臓器」とも呼ばれます。通常、臓器の血管系としては動脈と静脈がありますが、肝臓の場合はそれに加えて「門脈」があります。門脈は、胃や腸、脾臓、膵臓といった腹部の臓器からくる血管が合わさったものです。消化器官の血管には吸収された栄養物が多量に含まれているので、これらの栄養物はまず肝臓に入って代謝されることになります。また有害な物質を吸収した場合にもまず門脈から肝臓に運ばれて、そこで解毒されます。肝臓はグリコーゲンを貯蔵しており、血糖値が低下し場合にはグリコーゲンを分解してグルコースを放出し血糖値を上昇させます。肝臓はまた、胆汁を産生する場所でもあります。

つまり、肝臓の主要な働きは4つあると言われており、それは「代謝」、「解毒」、「胆汁合成」、「エネルギー貯蔵」です。肝臓はビタミンAやビタミン12を貯蔵しているので、「栄養素の貯蔵」という役割も担っていると考えてよいと思います。

関連記事⇒肝臓の役割

  1. 重要な臓器「肝臓」の役割とは? 協和発酵バイオ
  2. 肝臓は何をするところ? オルニチン研究会
  3. 肝臓における脂質生合成とその異常(PDF) 沼正作 京都大学・医化学 〈第10回日本肝臓学会総会 特別講演〉 脂質のうち中性脂肪エネルギーの貯蔵型として,一方燐脂質細胞膜その他膜系の主成分として生体に必須の成分である.また脂質代謝異常は成人病として最近特に注目され死因の最高を占めている動脈硬化症やこれと関連した脳卒中,心筋梗塞などの循環器疾患,さらには糖尿病,肥満症,などにおいてしばしば観察され,ある場合にはその原因的因子と考えられている.肝臓は他の物質代謝におけるごとく脂質代謝においても中心的な役割を演じている.
  4. 脂肪酸の合成 http://hobab.fc2web.com/ 脂肪酸合成は、肝臓腎臓乳腺脂肪組織など、多くの組織のミトコンドリア外(細胞質ゾル)で、マロニル-CoA経路で、行われる。

膵臓の役割とは

参考

  1. 脾臓の概要 MSDマニュアル家庭版
  2. ひ臓について 中外製薬
  3. ヒト脾臓の構造と機能 日門亢会誌 2009; 15: 344─ 347
  4. Spleen problems and spleen removal  NHI inform
  5. 脾臓について 消化器外科医が扱う主な疾患とその治療法 日本消化器外科学会
  6. リッピンコット免疫学原書2版 92ページ 二次リンパ組織と器官
  7. 脂肪酸合成を図で分かりやすく解説【薬学の勉強はこれでOK】akugaku-gokaku.com

 

 

 

Th1/Th2バランスとは?Th17の発見による仮説の修正

Th1/Th2バランスとは

病態の説明などにおいてしばしばTh1/Th2バランスといった言葉が登場します。これはヘルパーT細胞の亜型であるTh1細胞とTh2細胞のそれぞれの働きの拮抗をあらわした概念です。Th1細胞が細胞性免疫を亢進させる働きを持つのに対して、Th2細胞は体液性免疫を亢進させる働きを持ちます。また、Th1細胞はインターフェロンγを分泌してTh2細胞に働きかけその活動を抑制します。逆に、Th2細胞はインターロイキン4やインターロイキン10、TGF-βなどを産生してTh1細胞を抑制するように働きかけます。

  1. リッピンコット免疫学172~173ページ Th1/Th2パラダイム、253ページ Th1/Th2バランス
  2. The Th1/Th2 paradigm: still important in pregnancy? 03 May 2007
  3. Revisiting the Th1/Th2 paradigm Muraille 1998 (PDF)
  4. The Th1/Th2 paradigm Sergio Romagnani June 1997 Immunology Today

Th1/Th2パラダイムは非常にわかりやすい仮説(パラダイム)なので魅力的ですが、必ずしもこのような単純な図式では説明がつかないこともあるため、免疫学の教科書を見た時に取り扱い方は様々です。リッピンコットの教科書では、「モデル」としてしっかりと紹介されていました。

最近の教科書を見ると、Th1/Th2パラダイムを紹介していないものも多いようです。自分は、科学は事実の羅列ではなく、どう理解するか、概念の確立だと思っているので、かりに訂正が必要であったとしてもこのような明確な概念、パラダイムが研究の進展において果たした役割は説明してほしいと思います。

 

Th1/Th2パラダイムの趨勢

Th1/Th2細胞のバランスが、生体の免疫応答の性質を決めるというこの仮説はその後数十年間、免疫学の世界を支配するパラダイムになりました。(私的免疫学ことはじめ (2) Th1/Th2パラダイム  2020年7月30日 医局ブログ)

科研費の採択課題をみてみると、Th1/Th2バランスを前面に推した計画は2002年ころがピークだったようです。

      1. Th1/Th2バランスをターゲットとしたPDE5阻害薬による流産改善効果の検証 2022-04-01 – 2025-03-31
      2. 舌下免疫療法におけるセマフォリン4Aを介した Th1/Th2制御の解明 2017-04-01 – 2020-03-31
      3. 被嚢性腹膜硬化症におけるTヘルパー細胞の役割の解明と新規治療法の開発 2013-04-01 – 2016-03-31
      4. Thバランスの制御による難治性喘息に対する新規治療法の探索 2011 – 2013
      5. Th17/Th1/Th2細胞優位発現マウスを用いた免疫複合体腎炎の病態解析 2010 – 2012
      6. メモリーTh1/Th2細胞の形成と機能維持のエビジェネティック制御に関する研究 2009 – 2011
      7. Th1 Th2 バランスの制御による魚類のウイルス病に対する細胞性免疫誘導 2009 – 2010
      8. Th1/Th2バランスの破綻として捉える薬剤性肝障害 2008 – 2010
      9. Th1/Th2細胞分化におけるケモカインCCL21、CCL19の役割の解析 2007 – 2008
      10. 乳幼児期の細菌刺激および化学物質曝露による成長後のTh1/Th2バランスへの影響 2007 – 2009
      11. 抗うつ薬応答性に及ぼすTh1/Th2サイトカイン遺伝子多型の影響 2006
      12. チロシンキナーゼTxkによるマスト細胞のTh1/Th2応答の制御機構 2006 – 2007
      13. Tim分子によるTh1/Th2反応制御機構の解明 2006 – 2007
      14. ナノ粒子(酸化チタンおよび酸化亜鉛)のTh1/Th2/Th3免疫応答に与える影響 2006 – 2007
      15. 魚類のTh1/Th2バランス制御機構の解明 2006 – 2008
      16. セマフォリン分子Sema4AのTh1/Th2反応制御機構の解明 2006 – 2007
      17. Th1/Th2バランス関連サイトカン遺伝子多型とうつ病発症・自殺企図との関連性 2005
      18. 樹状細胞とNKT細胞によるTh1/Th2サイトカインバランスの調節機構とその応用 2005 – 2006
      19. 新規ヒト腎炎モデルマウスの病態解析及びTh1/Th2転写制御による治療の試み 2005 – 2006
      20. Th1/Th2細胞分化・機能維持とクロマチンリモデリングに関する研究 2005 – 2007
      21. 好塩基球を介したTh1/Th2分化制御および感染に対する免疫監視機構の研究 2005 – 2006
      22. DNAM-1による樹状細胞の活性化とTh1/Th2バランスの制御機構 2005 – 2006
      23. Th1/Th2バランス制御を介した抗腫瘍免疫の誘導とそのメカニズムの解析 2005 – 2006
      24. Th1,Th2サイトカインの皮膚バリア機能に及ぼす影響 2004 – 2006
      25. 耳鼻咽喉科領域疾患におけるTh1,Th2,Tc1,Tc2細胞の検討 2004 – 2005
      26. 黄砂のTh1・Th2免疫系および経口免疫寛容に与える影響 2004 – 2006
      27. 抗原提示細胞を介したTh1/Th2細胞への分化・誘導制御機構と免疫細胞療法 2004 – 2007
      28. Th1/Th2分化におけるIL-12レセプターβ1遺伝子プロモーター機能の役割 2004 – 2005
      29. CD8α陽性樹状細胞の活性化とTh1/Th2バランスの制御機構 2004
      30. Th1/Th2細胞における皮膚ホーミングレセプター発現機序に関する研究 2003 – 2004
      31. クロマチンリモデリング選択的GATA-3変異体を用いたTh1/Th2バランス制御 2003
      32. 内分泌攪乱物質の免疫攪乱誘導による免疫毒性作用 2003 – 2004
      33. Th1/Th2病としての自己免疫疾患の病態解明と予防・治療 2003 – 2005
      34. サイトカイン抑制制御分子SOCSを利用したTh1・Th2バランスの改変 2003
      35. 転写因子AML1によるT細胞のTh1/Th2系列への振り分け制御機構の解明 2003
      36. 表皮におけるセラミド合成に対するTh1、Th2サイトカインの影響 2002 – 2003
      37. アトピー性皮膚炎の表皮細胞におけるTh1とTh2ケモカイン産生の制御について 2002 – 2003
      38. Decoy DNAによるTh1/Th2サイトカインの発現調節と免疫応答制御の検討 2002 – 2003
      39. Th1,Th2への分化に伴うE-セレクチン・リガンドと糖転移酵素の発現 2002 – 2003
      40. TH1・TH2バランスと自然免疫のクロストークにおける細胞内レドックスの役割 2002 – 2003
      41. 免疫学的生殖不全におけるNK・NKT細胞,Th1/Th2サイトカインの役割の解明 2002 – 2004
      42. Th1/Th2分化制御による慢性関節リウマチの分子標的療法開発への基礎的研究 2002 – 2003
      43. Th1/Th2細胞分化とクロマチンリモデリングに関する研究 2002 – 2004
      44. 内分泌攪乱物質のTh1/Th2免疫応答への影響と易感染性との関連 2002 – 2003
      45. サイトカインシグナル抑制分子SOCSを利用したTh1・Th2バランスの改変 2002 – 2003
      46. 樹状細胞によるTh1/Th2バランスの決定機構 2002
      47. 食餌制限によるTh1/Th2バランスの制御とその癌ワクチン療法への応用 2002 – 2004
      48. 炎症性骨吸収におけるヘルパーT細胞(Th1・Th2細胞)の役割 2002 – 2004
      49. 炎症性骨吸収におけるヘルパーT細胞(Th1・Th2細胞)の役割 2002 – 2004
      50. 妊娠時におけるTh1/Th2バランスに関する検討 2001
      51. バセドウ病モデルマウスの病態におけるTh1/Th2細胞・IL-5が果たす役割 2001
      52. 敗血症におけるTh1/Th2サイトカインの作用と調節機構の解明 2001 – 2002
      53. Th1/Th2細胞分化機構の制御によるがん免疫の賦活化 2001
      54. 口腔扁平上皮癌患者の放射線治療によるTh1/Th2バランスの変化について 2000 – 2001
      55. 侵襲時における末梢血Th1/Th2バランスの変動とサイトカイン動態に関する検討 2000 – 2001
      56. ヘルパーT細胞Th1/Th2バランスを制御する転写因子の検索 2000 – 2001
      57. マイクロアレイ法を用いたTh1,Th2型免疫応答の分類化と免疫疾患の病態解析 2000
      58. 卵巣癌患者末梢血幹細胞移植におけるTh1/Th2解析に関する研究 1999 – 2000
      59. 癌患者におけるHelper T CellのTh1/Th2バランスに関する研究 1999 – 2000
      60. 自己免疫疾患発症の分子機構の解明およびその制御:細胞表面分子群のTh1/Th2分化・誘導機構の解明とその制御 1999 – 2000
      61. 全身性エリテマトーデスにおけるTh1/Th2バランスの解析 1999 – 2002
      62. Th1/Th2細胞の活性化による微生物に対する感染防御能の増強効果 1999 – 2001
      63. Th1/Th2バランス制御法の癌免疫療法への応用 1999
      64. 間質性肺炎に於けるTh1/Th2細胞及びIL-2の役割の研究 1999 – 2000
      65. Th1/Th2バランス制御因子の遺伝子解析とその免疫疾患との関連性 1998 – 1999
      66. Th1/Th2細胞誘導を指標としたBRM感受性試験の開発と臨床応用 1998 – 2000
      67. Th1/Th2バランスからみたHAM発症分子機構の解明と治療法開発の基礎的検討 1998 – 1999
      68. シェーグレン症候群ににおけるTh1/Th2バランス異常の解析とその制御戦略 1998 – 1999
      69. 外科侵襲に対する免疫応答におけるTh1/Th2システムの証明 1997
      70. アトピー性皮膚炎患者のTh1-Th2バランス制御機構の解析 1997 – 1998
      71. 自己腫瘍特異的CTLのTCRVβレパトアとTh1/Th2サイトカイン産生能の解析 1997 – 2000
      72. IgA腎症病態発現へのTh1/Th2バランス制御の効果-若年好発症IgA腎症 (HIGA) マウスへのIL-12投与の検討- 1997 – 1998
      73. C型肝炎ウィルス特異的ヘルパーTクローン樹立と抗原依存性TH1・TH2分化の検討 1996 – 1997
      74. アトピー性皮膚炎患者におけるTh1-Th2バランス制御機構の解析 1996
      75. 遅延型過敏症を担うTh1,Th2細胞活性化における抗原提示細胞表面分子の役割 1996
      76. マウスでの抗原反復投与によるTH1/TH2不均衡の成立機序:マウスのアトピー性皮膚炎モデル作成とその検討 1996
      77. フローサイトメトリーによるTh1/Th2リンパ球の解析-猫条虫感染マウス系におけるエフェクター細胞の検討- 1996
      78. 炎症性皮膚疾患におけるTh1 Th2細胞へのdeviationを規定する因子の解析 1996
      79. AIDS粘膜ワクチン:Th1/Th2型細胞によるHIV特異的粘膜免疫の誘導 1996
      80. 自己免疫性心筋炎の発症における細胞間分子およびTh1/Th2サイトカンの役割の解明と抗接着分子療法による治療に関する臨床的・実験的検討 1995
      81. 寄生虫感染におけるTh1,Th2サブセット活性化機構の解明 1995 – 1996
      82. AIDS粘膜ワクチン:Th1/Th2型細胞によるHIV特異的粘膜免疫の誘導 1995
      83. 皮膚樹状細胞とアレルギー,Th_1/Th_2サイトカイン群と抗原提供能 1994
      84. 広東住血線虫感染マウスのTh1/Th2サイトカイン応答 1994 – 1995
      85. 腎細胞癌内TH1/TH2免疫調節機構、T細胞受容体解析および腎細胞癌免疫療法 1993 – 1994

Th17の発見とTh1/Th2パラダイムの修正

The classical T helper (Th)1 and Th2 CD4+ T cell effector paradigm has recently been challenged. Studies from various laboratories have shown the existence of a T cell subpopulation, dubbed Th17, not only distinct from Th1 and Th2, but a different pro-inflammatory Th-cell lineage.( Autoimmunity Reviews Review Autoimmune inflammation from the Th17 perspective Autoimmunity Reviews Volume 6, Issue 3, January 2007, Pages 169-175 無料要旨)

Helper T cells are CD4+ T lymphocytes that have an important role in determining the nature of the adaptive immune response. Since the 1980s, helper T cells have been classified in two major types, namely the Th1 or Th2 phenotype. Th1 cells promote cellular immunity, which is associated with anti-viral responses and tumour surveillance, whereas Th2 cells promote humoral responses to extracellular parasites and are involved in allergies. ‥ The two-dimensional Th1/Th2 paradigm has been a very successful foundation of immunology for the past 20 years. However, the recent discovery of Th17 cells confirmed earlier evidence that helper T cells may adopt phenotypes other than Th1 and Th2. (From the two-dimensional Th1 and Th2 phenotypes to high-dimensional models for gene regulation International Immunology, Volume 20, Issue 10, October 2008).

For almost two decades, the Th1/Th2 paradigm has offered a productive conceptual framework for investigating the pathogenesis of periodontitis. However, as with many other inflammatory diseases, the observed role of T-cell-mediated immunity in periodontitis did not readily fit this model. A new subset of CD4+ T-cells was recently discovered that explains many of the discrepancies in the classic Th1/Th2 model, and has been termed “Th17” based on its secretion of the novel pro-inflammatory cytokine IL-17. (A New Inflammatory Cytokine on the Block: Re-thinking Periodontal Disease and the Th1/Th2 Paradigm in the Context of Th17 Cells and IL-17 September 1, 2008 )

Th17細胞は粘膜免疫の維持に不可欠である一方で、それらの調節障害は自己免疫性炎症の病理発生に関与しています。標準的なTh1/Th2モデルとは異なるCD4+ヘルパーT細胞の3番目のサブセットの存在が最初に示唆されたのは、この炎症を引き起こす際のそれらの役割でした。元のモデルでは、Th1細胞は自己免疫の主なメディエーターであると考えられていました。しかし、それらの主要なTh1エフェクターサイトカインであるIFNγまたはそれらの活性化サイトカインであるIL-12が欠如すると、実験的自己免疫性脳脊髄炎(EAE)などの自己免疫性炎症のモデルが悪化することが明らかにされました。IL-12/IFNγではなくIL-23/IL-17系が、この炎症を媒介する主な経路として特定され、その後の研究では、この系に関連する新規のCD4+ヘルパーTサブセットとしてTh17細胞の特徴が明らかにされました。それ以来、Th17細胞は、関節リウマチ、乾癬、多発性硬化症、および炎症性腸疾患などの他の自己免疫疾患の進行に役割を果たすことが明らかにされています(ヘルパーT17細胞(Th17細胞)とは? ThermoFisher Scientific)

今となってはシンプルにすらみえるTh1/Th2分化の概念図に、Th17細胞という新しいサブセットが登場し、Th17細胞分化が制御性T細胞分化と相互背反的に成立することが示されるに至って、今や各T細胞サブセットの関連を、はるかに複雑な構図のなかで据え直す必要に迫られている(サイトカインネットワークのパラダイムシフト

これまでぜんそくをはじめとした種々のアレルギー疾患は、Th1細胞とTh2細胞のバランスが崩れることが病態形成の引き金となる(Th1/Th2アンバランスモデル)と考えられてきましたが、本研究グループは、記憶Th細胞中の病原性を持った集団によりアレルギー疾患の病態が慢性化する(病原性記憶Th細胞亜集団疾患モデル)という新たなコンセプトを提唱しています(ぜんそくなどのアレルギー性気道炎症の慢性化機構を解明~難治性アレルギー疾患の新規治療薬開発に期待~ポイント 平成27年2月18日科学技術振興機構(JST)千葉大学)

  1. Th17 and Treg Cells Innovate the Th1/Th2 Concept and Allergy Research Blaser K (ed): T Cell Regulation in Allergy, Asthma and Atopic Skin Diseases. Chem Immunol Allergy. Basel, Karger, 2008, vol 94, pp 1-7(無料要旨)
  2. Kelso A, Troutt AB, Maraskovsky E, et al. Heterogeneity in lymphokine profiles of CD4+ and CD8+ T cells and clones activated in vivo and in vitro, Immunol. Rev., 1991, vol. 123 pg. 85

その他の参考

  1. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjögren’s syndrome: Findings in humans and mice Cuong Q. Nguyen, Min H. Hu, Yi Li, Carol Stewart, Ammon B. Peck First published: 29 February 2008

γグロブリンとは?Ig Gとの違いは?

γグロブリンととイムノグロブリンG(Ig G)とは名前が似ているため、違いは何だっけとたまに頭が混乱することがあります。血清蛋白質を電気泳動で分離したときに、

アルブミン、α1グロブリン、α2グロブリン、γグロブリン

の順序で分画が分かれます。このうち、γグロブリンの分画には、 IgA, IgM, IgD, IgE, and IgGが含まれています。つまり、γグロブリンの実体は、IgA, IgM, IgD, IgE, IgGの混合物ということになります。γグロブリンというのは特定のたんぱく質の名称ではなくて、タンパク質を分離したときの分画の名前だったというわけです。IgA, IgM, IgD, IgE, IgGは免疫グロブリンと総称されるので、γグロブリン=免疫グロブリンともいえます。

  1. 血清蛋白電気泳動法(shinshu-u.ac.jp)
  2. What is the Difference Between Gamma Globulin and Immunoglobulin
  3. βグロブリン (Beta globulin) (ウィキペディア):血漿中に存在する球状タンパク質のグループである。βグロブリンには、次のようなものが含まれる。β-2マイクログロブリン、プラスミノーゲン、アンギオスタチン、プロペルジン、性ホルモン結合グロブリン、トランスフェリン。

ガンマグロブリン療法

  1. ガンマグロブリン療法(tmd.ac.jp)十分な量の免疫グロブリンあるいは抗体を体内で作ることのできない患者には、ガンマグロブリンによる補充治療を行うことができます。‥ ガンマグロブリン製剤はほぼ純粋なIgGであり、基本的にIgAやIgMは含みません。

上司とのコミュニケーションを円滑にして自分の思い通りの結果を得る方法

組織内で仕事をする際に、上司の全面的な支援が必ずしも得られるとは限りません。その場合の対処法としては、上司になんとかして動いてもらうか、少なくとも了承してもらう必要があります。そのためにはどうすればよいのでしょうか。

その解決策を提示する本というものが結構な数出版されていました。

「困った人たち」とのつきあい方  1997/6/1 ロバート・M. ブラムソン Robert M. Bramson

究極の人間関係改善術 職場の「苦手な人」を最強の味方に変える方法 2019/5/17 片桐 あい

上司をマネジメント 2007/9/1 村山 昇

トップ3%の人は、「これ」を必ずやっている 上司と組織を動かす「フォロワーシップ」2020/2/28 伊庭 正康

その上司、大迷惑です。 困った上司とかしこく付き合う傾向と対策 2007/8/17 松井 健一

職場のクセモノと付き合う技術 2019/3/16 横山 信治

バカ上司の取扱説明書 (SB新書) 出版年: 2018/9/6 著者:古川 裕倫 出版社 ‏ : ‎ SBクリエイティブ

難しい性格の人との上手なつきあい方 2001/2/1 フランソワ ルロール, クリストフ アンドレ

あなたが上司から求められているシンプルな50のこと  2012/4/17 濱田 秀彦

ソーシャルスタイル理論でわかった! 10万人のデータから導き出した 上司へのすごい伝え方  2021/4/17 斉藤 由美子

職場の嫌いな人の取り扱い方法 2006/7/1 小林 惠智

できる人はやっている上司を使い倒す50の極意 田中和彦 祥伝社 出版年月:2014年06月

上司とうまくいかなくて会社を辞める前に試したい10のコミュニケーション術。 10分で読めるシリーズ  江戸しおり、 MBビジネス研究班 出版社:まんがびと

ある抗原を認識したB細胞の増殖を促すヘルパーT細胞はどうやってその同じ抗原を認識できるのか

抗原刺激を受けたBCRを持つB細胞の増殖をヘルパーT細胞が促すわけですが、このヘルパーT細胞はどうやって同一の抗原を認識するのでしょうか。免疫学の教科書を読んでいて、そこが良く理解できませんでした。

たいていの免疫学の入門用の本では、ヘルパーT細胞はサイトカインをだしてB細胞を元気づけるような図が書いてあります。しかし、それでは、どうしてはしか攻撃隊のT細胞がはしか攻撃隊のB細胞だけを選んで指令を伝えられるか、説明になっていません。免疫学を勉強したというひとでも、この原理を理解していないひとが多いように思います。(抗原の情報はどうやってT細胞からB細胞へ伝わるの? 河本宏研究室)

自分の疑問はどうやらもっともな疑問のようです。もう少し具体的にいうと、リッピンコットの教科書の145ページに、B細胞と抗原提示細胞の絵が描いてあったのですが、この抗原提示細胞はこのB細胞と同一ではないの?別の細胞なの?という疑問が湧いたわけです。B細胞が同時に抗原提示細胞にもなっているのであれば、おなじ抗原を認識するT細胞が、その抗原を認識する免疫グロブリンを産生するB細胞の増殖を促進させるということで説明ができるのにと思ったわけです。しかし、この図10.18だと細胞が別に描かれていました。

ただこの可能性に関していうと、かりにB細胞が抗原提示細胞をかねたとしても、MHCクラスII分子にのせて提示するペプチドの由来となる抗原タンパク質が、BCRが認識する抗原タンパク質と同一である保証はありません。細胞のまわりにある抗原はたくさんの種類があるでしょうから、同一になる保障は全くないはずです。

上のウェブ記事を読むと、説明がありました。抗原提示細胞は樹状細胞などのようです。ある抗原が提示されてそれに反応するT細胞が「活性化」します。同じ抗原をB細胞もBCRで認識できたとすると、それを細胞内に取り込んで、B細胞も抗原提示を行います。すると樹状細胞による抗原提示で刺激を受けたT細胞がその細胞の抗原提示に対して反応することができますので、このヘルパーT細胞はそのB細胞の増殖を指令することができるということのようです。だとするとリッピンコットの教科書はそのあたりの詳細が省かれていたということのようですね。

Janeway’sの免疫学の教科書にはこのあたりの説明が非常に詳細に述べられていました。原書第9版の邦訳版ですが、第10章液性免疫応答で図10.2(400ぺージ)の左側の図や、図10.4(403ページ)などがわかりやすいです。上記の説明と同じことが図10.4に表現されていました。


(Janeway’s Immunobiology 9th edition Fig.10.4 / https://o.quizlet.com/wYER2UCvgzRKGNdj0tpH.g.png)

ウイルスを認識する例ですが、B細胞の細胞膜上のBCRはウイルスの表面のタンパク質を認識しています。そしてエンドソームとしてこのウイルスを取り込み、分解してウイルス内部のタンパク質の一部のペプチドをMHCクラスII分子との複合体として膜表面に提示します。すると、たまたま同じ抗原ペプチドを樹状細胞によって提示されていたものに反応したCD4陽性T細胞(ヘルパーT細胞)が、このB細胞による抗原提示を認識することができます。面白いのは、B細胞のBCRが認識する部位と、B細胞が抗原提示する抗原(すなわちヘルパーT細胞が認識する抗原)とは、別々であっていいということです。免疫系ってうまくできているなあと感嘆してしまいました。また、さすが定評のある教科書だとJaneway’sにも関心してしまいました。案外とここまで明確に図と文で説明してくれている教科書は少ないです(もしくは、説明がどこかにあってもそれを見つけられない)。

抗原はB細胞により認識され、抗原提示細胞はCD+T細胞に対してペプチドを提示する。B細胞とT細胞は同一のエピトープを認識する必要はない。(リッピンコット免疫学145ページ図10.18 図中の説明)

リッピンコットの教科書にも、BCRが認識するエピトープとヘルパーT細胞が抗原提示細胞提示されて認識するエピトープとは異なる部位であってもよいという説明がありました。リッピンコットの教科書は、このようにメリハリの効いた言葉による説明があるので、自分は頭に入ってきやすいように思います。

 

 

 

クラススイッチ(アイソタイプスイッチ)とは

クラススイッチとは

クラススイッチ(Immunoglobulin class switching)とは、免疫グロブリンの定常領域(Fc領域)が変化することです。ナイーブB細胞(刺激を受ける前のB細胞)は、IgMやIgDの膜結合型の分子を細胞膜表面に発現しています。抗原による刺激を受けたナイーブB細胞は、形質細胞へと分化しますが、一部は記憶B細胞(memory B cell)となります。将来、同じ刺激を受けた記憶B細胞は、T細胞からのサイトカインに応じて、クラススイッチを起こします。クラススイッチは、アイソタイプスイッチとも呼ばれます。クラススイッチを起こすのはB細胞であって、T細胞ではこのようなことは起こりません。

クラススイッチという呼称をよく聞きますが、リッピンコットの免疫学の教科書ではアイソタイプスイッチという言葉を使っていました。

クラススイッチを生じる遺伝子再編成

クラススイッチは、遺伝子の再編成が起きることによります。第14染色体にはH鎖の遺伝子群がありますが、200個以上のL/V遺伝子、20個以上のD遺伝子、6個のJH遺伝子、9個のC遺伝子がこの順に並んでいます。クラススイッチを決める部分はC遺伝子で、細かくみるとCμ、Cδ、Cγ3,Cγ1、Cα1,Cγ2,Cγ4,Cε、Cα2の9個の領域がこの順に並んでいます(それぞれ、IgM, IgD, IgG3, IgG1, IgA1, IgG2, IgG4, IgE, IgA2に対応)。DHーJHの次に位置する領域が何かでクラスが決まります。遺伝子が再編成されていないときはC遺伝子の一番左端にあるのはCμなので、クラスはMです。クラスDをつくるためには、遺伝子再編によってCδが一番左にくるように、その間にあるDNAの領域が除去されます。他のクラスをつくるときも同様で、間のDNAが除去されます。例えば、IgA2のクラスをつくりたい場合には、遺伝子再編成によりゲノムはVDJのすぐ隣にCα2の領域が直結するように、間の部分のDNAが除去されます。

クラススイッチの方向性

、Cδ、Cγ3,Cγ1、Cα1,Cγ2,Cγ4,Cε、Cα2という順番からわかるように、最初IgMを産生するB細胞だったものが、遺伝子再編成を経てIgG3産生細胞になり、さらに遺伝子再編成を経てIgG2産生細胞になり、さらにIgA2産生細胞になるという経過をたどることが可能です。

参考

  1. リッピンコット 免疫学 原書2版 邦訳 110ページなど

ナチュラルキラー(NK)細胞(natural killer cells)とは

ナチュラルキラー(NK)細胞(natural killer cells)とは

自然免疫のシステムは、可溶性物質による防御機構と、細胞性の防御機構がある。細胞性の防御機構としては、貪食細胞による貪食や、NK細胞による攻撃がある。

末梢のリンパ球のうち、T細胞 (CD3をマーカーとして発現)でもB細胞(マーカーとして免疫グロブリンを発現)でもない集団があり、それがナチュラルキラー細胞(末梢のリンパ球の5~10%)。前感作なしである種の腫瘍細胞を殺すことができることから、この名前がついた。

ウイルスに感染した細胞はストレス分子MICAやMICBを発現する。またMHCクラスI分子の発現量が減少する。NK細胞のキラー活性化レセプター(killer activation receptor)は、MICAやMICBと結合し、キラーシグナルを生み出す。また、NK細胞のキラー抑制性レセプター(killer inihibition receptor)は、MHCクラスI分子と結合することにより、MHCクラスI分子の発現量をモニターする。MHCクラスI分子が十分発現していれば、先のキラーシグナルを抑制する。不十分であればキラーシグナルが優勢となり、NK細胞が宿主細胞を死に至らしめる。

参考

  1. リッピンコットシリーズ イラストレイテッド免疫学 原書第2版