投稿者「PhD」のアーカイブ

ギブスの自由エネルギーとは何か?最もわかりやすい説明

ギブスの自由エネルギーが何かを知るために熱力学の教科書を開いても、その定義式G=H-TSからわかるように、まずエンタルピーHが何か、そしてエントロピーSが何かを知っておく必要があり、教科書の章を遡って読み始めない限り、理解に達しません。数式を負いながらの理解はなかなか大変です。そこで、言葉による、最もわかりやすい説明がないかと調べてみました。

それが何か?なぜそれを考えたのか(定義したのか)?それで何ができるのか?それは何ではないか。といった視点での理解も大事かと思います。

Thermodynamics and Chemical Dynamics 131C. Lecture 14. The Gibbs Energy. UCI Open チャンネル登録者数 28.5万人

ギブスの自由エネルギーを考えるわけ

ある変化が自発的に生じるかどうかは、熱力学の第二法則「孤立系のエントロピーは増大する」というもので判断できます。「系」というのは、任意に決められるわけですが、系と系の外側に区別できるようなものです。例えば、お湯をわかすヤカンを系と考え、ヤカンの外側の部分と区別して考えることができます。ピストンがついたシリンダーであれば、そのシリンダーが系と考えられます。人間という個体を系と考えてもよいし、細胞一つを系と考えてもいいでしょう。ただし重要なことは、系と系と外側との間に、物質の移動やエネルギーの移動があるかどうか。エネルギーの移動も物質の移動もない系が、孤立系と呼ばれます。厳密にいうと、孤立系なんて存在しないんじゃないのということにもなります。すると宇宙全体が、唯一実在する孤立系なのかもしれません。そこで、通常は、自分の興味の対象としての「系」とそれを取り囲む周囲の「系」そしてこの周囲の系は、そのさらに外側とは物質もエネルギーも移動しないと考え、「系」+「その周囲」を合わせて孤立系と考えます。教科書によって使う言葉が多少違うけれども、指している内容は同じです。

熱力学第2法則によれば、全系のエントロピーは減少しない。

∆S全系 =∆S反応+∆S熱浴 ≥0                           (1.2)

しかし、この式そのものはあまり便利ではない。これが述べているのは、全系のエントロピーが減少しないということだけであって、肝心の反応系における変化については何も分からない。‥ 我々にとっては、熱浴に関する詳細は興味がなく、反応系で何が起こるかが関心事である。そこで、上の式から反応系に関する情報だけを抽出することが望ましい。この目的のために、反応系の「ギブス自由エネルギー」という量を次のように定義する。

∆G反応 =∆H反応−T∆S反応                           (1.3)

(京都大学OCW 安藤耕司 第1章 熱力学の復習  第4回 自発的過程と自由エネルギー 基礎物理化学B )

ギブスの自由エネルギーとは

ウェブ上に大部の大学化学の教科書が公開されていました。

自由エネルギー変化は、以前に特定された自発性の指標ΔS宇宙と直接関連しており、プロセスの自発性についての信頼できる指標です。‥ 自由エネルギーG=ΔH−TΔSは、プロセスによって生成されるエネルギーΔHと、周囲に失われるエネルギーTΔSを表しているものと解釈することができます。生成されたエネルギーと失われたエネルギーの差は、そのプロセスによって有用な仕事をするために利用可能な(すなわち「自由な」)エネルギーΔGです。(第16章 熱力学 Chemistry 2nd Edition)

生物版もありました。

熱力学の第二法則によれば、すべてのエネルギー伝達は熱のような使用不可能な形でエネルギーを失うことを含み、その結果エントロピーが生じることを思い出してください。ギブズの自由エネルギーは、私たちがエントロピーを考慮したうえで利用可能であるような、化学反応で起こるエネルギーのことを特に指しています。言い換えれば、ギブズの自由エネルギーは、使用可能なエネルギー、つまり仕事をするために利用可能なエネルギーのことです。 ‥ ΔGを計算するには、系の総エネルギー変化からエントロピーとして失われたエネルギー量(ΔSと表示)を引きます。科学者たちはこの系の総エネルギー変化のことをエンタルピーと呼び、私たちはそれをΔHと示します。ΔGの計算式は次のとおりです。ここで、記号Tはケルビン単位での絶対温度(摂氏温度 + 273)を表します: ΔG = ΔH — TΔS (第6章 代謝 生物学 第2版  Japanese translation of “Biology 2e”)

生化学の教科書によくある反応前後のエネルギーの模式図の縦軸は何エネルギーか

エネルギーにいろいろな種類(エンタルピー、ギブス自由エネルギーなど)があるのなら、反応前後でのエネルギー差を示した生化学の教科書によくある図の縦軸は何なのだろうと思いました。教科書によっては単に「エネルギー」と書いてあり、別の教科書には「自由エネルギー」と書いてあります。ΔG=ΔHーTΔSなので、A+B→C+Dの反応におけるエネルギーの差ΔGは、ΔHからTΔSを引いたものであり(つまりΔH=ΔG+TΔS)、そのように図示している教科書もありました(集中講義生化学 MEDICAL VIEW)。A+Bのところの線から活性化エネルギーを超えてC+Dの線まで降りる(ΔGが負の場合)わけですが、示されている値は「自由エネルギー」なので、縦軸は自由エネルギーということになろうかと思います。

 

参考となる教科書やウェブ記事

  1. 『集中講義 生化学』 MEDICAL VIEW社 8ページ 自由エネルギーとはなにか?
  2. 「エントロピーから読み解く生物学」を読み解く -.hiroshima-u.ac.jp
  3. https://icho.csj.jp/36/pre/P-5ans.pdf
  4. https://www.bio.phys.tohoku.ac.jp/~ohki/Physics_C/Aug11.pdf
  5. http://kek.soken.ac.jp/sokendai/wp-content/uploads/15phy_MSS.pdf
  6. 結合エネルギーとは 技術情報館 SEKIGIN 分子の持つ全結合を切断するためのエネルギーの総和である。
  7. 反応熱とは 技術情報館 SEKIGIN 最初の状態と最終状態の結合エネルギーの差に基づき,出入りする熱を反応熱という
  8. 結合エネルギーと反応熱 fromhimuka.com 結合エネルギーを通常は発熱、吸熱の場合を分けずに絶対値で表します。(反応熱)=(生成物の結合エネルギーの和)-(反応物の結合エネルギーの和)ただ、この関係が成り立つのは「反応物も生成物も気体」に限ります。

 

なぜ、お昼ご飯のあとに眠くなるのか、その理由は何?

仕事でも学校の授業でも、お昼ご飯を食べたあとはなぜかとても眠くなります。あの睡魔の理由は一体何なのでしょうか?2つの説があります。一つは消化のために血流が胃腸に集中して、脳の血流が足りなくなるから。脳に行く栄養(グルコース)が不足して脳の働きが鈍るというものです。もう一つの説は、「血糖値スパイク」と呼ばれるもので、食事を摂ると消化により血糖値が上昇するので、膵臓からインスリンが分泌されて血糖値を下げようとします。つまり血糖値は食事によって、一度上昇してそのあと下降するわけです(急激な上昇とそのあとの下降が、スパイクと呼ばれます)。すると血糖値を下げ過ぎて脳でグルコースが不足してしまうわけですね。

どれだけ科学的なエビデンスがあることなのかは、不勉強でよくわかりませんが、ネットの記事でよく見かけるのがこの2つの説です。

  1. https://www.toshin.com/question_stop/questions/145 本来十分な睡眠時間を取れていれば日中は食べても眠くなりません。(柳沢 正史 先生)
  2. https://dododododo.jp/878/
  3. https://www.verywellhealth.com/why-am-i-sleepy-after-eating-lunch-3014827
  4. https://www.sleepfoundation.org/nutrition/why-do-i-get-sleepy-after-eating
  5. https://www.washingtonpost.com/wellness/2022/09/26/tired-sleepy-after-lunch-afternoon/

大学の生化学の授業動画(MIT講義その他)・YOUTUBE動画

大学の生化学の授業動画(MIT講義その他)・YOUTUBE動画などのまとめ。順不同。

Science Simplified

@sciencesimplified3890 チャンネル登録者数 1.81万人

  1. EVERY SINGLE METABOLIC PATHWAY YOU NEED TO KNOW FOR BIOCHEMISTRY MCAT IN 30 MINUTES!!! メリハリのついた説明。
  2. Beta Oxidation and Fatty Acid Oxidation (EVERYTHING YOU NEED TO KNOW BIOCHEMISTRY MCAT) 

The Immunerd

The Immunerd @theimmunerd3706 チャンネル登録者数 308人

  1. Biochemistry 101: Carbohydrates (Lecture 6 of 12) The Immunerd チャンネル登録者数 308人 音声が不明朗(音量が小さい)のと明瞭(音量大きい)のが交互になっていた。

MIT

MIT 7.05 General Biochemistry, Spring 2020 Instructor: Matthew Vander Heiden

  1. 12. Carbohydrates/Introduction to Membranes

Web of Scienceの使い方:自分の大学の文献の検索方法

Web of Scienceで文献を検索しようとして、

https://www.webofscience.com/wos/woscc/basic-search のページで

著者所属 – 拡張 を選び、XXXXXXX Universityのように大学名を入れて「検索」ボタンを押したのですが、「検索結果が見つかりません。スペルを確認するか検索範囲を広げてください。」という非情なメッセージが表示されるだけで、何も検索できませんでした。そんな馬鹿なと思いましたが、一体どうしてでしょうか。PubMEDのように簡単に検索できるのかと思ったのですが、思ったより使い方がわかりにくいようです。試しに、

「タイトル」を選んで、適当なキーワード(英語)を入れてみたら数百件ヒットしました。検索結果を眺めていてようやく気付いたのですが、どうやら所属大学での検索方法が違っていたようです。Universityとスペルアウトしがのが失敗でした。

XXX Univ のように略語しか受け付けていなかったのです。クセがありますね。Web of Scienceを使える環境にいるのに、普段ほとんど使わないのはこういう最初のハードルの高さのせい。

アラートを登録しておけば、毎日か毎週か毎月、新着文献をメールでお知らせしてくれるのも便利。

グルコース-アラニン回路(Cahill cycle; Glucose-alanine cycle)とは:筋肉と肝臓とが作る代謝ネットワーク

人間は栄養源となる食べ物を食べて、それを分解することによりエネルギーとなるブドウ糖を得ています。しかし、食事と食事との間、あるいは長い間食べることがなくて飢餓状態になると、体の中に蓄えておいたエネルギー源を使わなければなりません。

筋肉は、貯めておいたグリコーゲンを分解してグルコースをつくり、解糖系でATPを産生します。飢餓が長く続くと、筋肉を構成するタンパク質を分解してエネルギー源にします。

筋肉で分岐鎖アミノ酸が代謝されるとき、アミノ酸のアミノ基がピルビン酸に転移されてアラニンが生じ、アラニンが血中を通って肝臓に運ばれ、そこでアミノ基は尿素へと変換され、アラニンは再びピルビン酸になって糖新生の経路でグルコースになり再び血中に入って筋肉にグルコースが届けられるという代謝サイクルがあり、グルコース-アラニン回路あるいはCahill cycleと呼ばれるようです。

マークス臨床生化学の教科書におけるグルコース-アラニン回路の説明

マークス臨床生化学(第5版)の541ページの図32-8をみると、筋肉でアミノ酸からアミノ基が外れてα-ケト酸になり、そのアミノ基はα-ケトグルタル酸に転移されてグルタミン酸を生成します。今度はそのグルタミン酸からピルビン酸にアミノ基が転移して、グルタミン酸は再びα-ケトグルタル酸に戻り、ピルビン酸はアラニンになります。そのアラニンは肝臓に運ばれて、グルコースに変換され再び血中に放たれて、筋肉で取り込まれて解糖系に入るので、回路が完成します。マークス臨床生化学の説明はわかりやすいと思いました。ちなみに肝臓の方の経路は、簡単に、

アラニン→窒素→尿素→尿、

アラニン→炭素→グルコース

としか書かれていません。マークスは同じ541ページの図32-9では、筋肉を含めた末梢組織でのグルタミン産生の経路の説明もされています。そこでは由来は明示していませんがアンモニウムイオンNH4+をαケトグルタル酸が取り込んでグルタミン酸となり、さらにもう一度アンモニウムイオンNH4+を取り込んでグルタミンになることが説明されています。αケトグルタル酸はアンモニア分子を2分子取り込めるわけです。グルタミンもまた血中に出て肝臓に行きます。ここでアミノ基がアンモニアとして遊離して尿素になり尿中に排泄されます。

ハーパー生化学の教科書におけるグルコース-アラニン回路の説明

Harper’s Illustrated Biochemistry 30th Editionの邦訳、イラストレイテッド ハーバー・生化学原書30版(丸善出版)の337ページ図28-6にグルコース-アラニン回路の説明があります。それによると、アミノ酸から由来するアミノ基 -NH2がピルビン酸に転移されてアラニンが生成しています。ただこの教科書はグルコース-アラニン回路の肝臓の経路でも、アラニン→ -NH2 →尿素 と描いているので、アンモニアは表立って表現されていません。

コリ回路(乳酸回路)との関連でいうと、筋肉においてピルビン酸ができるところが共通で、コリ回路の場合は解糖系でできたピルビン酸が乳酸にまで代謝されて、乳酸が血流を通じて肝臓に運ばれます。一方、グルコース-アラニン回路では、筋肉でピルビン酸がアミノ基受容体として働きアラニンに変換され、アラニンが血流にのって肝臓にいきます。似た回路はまとめて覚えたほうがよいのですが、ハーパーの教科書の222ページ図19-5では2つの回路がひとまとめに描かれていて、理解を助けます。

  1. Exercise-induced changes in amino acid levels in skeletal muscle and plasma J Phys Fitness Sports Med, 2(3): 301-310 (2013) DOI: 10.7600/jpfsm.2.301 この論文にもグルコース-アラニン回路の図がありますが、Amino acid  → -NH2  → Alanine と描かれています。

レーニンジャーの生化学の教科書グルコース-アラニン回路の教科書による説明(?)

レーニンジャーの生化学の教科書には、ヌクレオチドの分解などにより多くの組織において遊離アンモニアが生成アンモニアはグルタミンの形で血液中を通って肝臓に送られて、肝臓で尿素の形になることが説明されています。

アンモニアがグルタミンの形になるのは、二段階の反応を経由します。まずL-グルタミン酸 -OOC-CH2-CH2-CH(NH3+)-COO-  が酵素グルタミンシンテターゼの働きによってリン酸化されてγ-グルタミルリン酸 (PO4 2-)-C(=O)-CH2-CH2-CH(HN3+)COO- になります。このときリン酸を供与したATPがADPになります。次に同じく酵素グルタミンシンテターゼの働きによってアンモニアNH4+がγ-グルタミルリン酸に結合し、L-グルタミン NH2-C(=O)-CH2CH2CH(NH3+)COO- が生成します。

さて、アンモニアの運び手としてグルタミンがまず紹介されましたが、グルタミンだけでなく、アラニンもアンモニアの運び手になります。筋肉と肝臓の間にできるグルコース-アラニン回路においては、アンモニアの運び手はアラニンなのです。

アミノ酸のアミノ基はα-ケトグルタル酸に転移され、このアミノ基転移の結果グルタミン酸が生成します。このグルタミン酸は、上で説明した反応によってアンモニアを取り込んでグルタミンになることもできますが、酵素アラニンアミノトランスフェラーゼ(alanine aminotransferase; ALT)の働きで、α-アミノ基がピルビン酸に転移されてアラニンを生成します。α-アミノ基が抜けることでグルタミン酸はα-ケトグルタル酸になります。

この教科書(レーニンジャーの新生化学[下]第7版 廣川書店)の977ページにグルコース・アラニン回路の説明がありその項目タイトルは「アラニンはアンモニアを骨格筋から肝臓へと運ぶ」となっています。また図18-9では、筋肉タンパク→アミノ酸→NH4+ →グルタミン酸 という流れが示されています。項目タイトルおよび図中のこのアンモニアもしくはアンモニウムイオンNH4+はどこから来たのでしょうか。本文の説明を読んでも、このような流れは書かれていなかったと思います。アミノ酸のα-アミノ基はα-ケトグルタル酸に転移されてその結果グルタミン酸が生成すると説明されていたわけです。

アミノ酸をエネルギー源として分解する筋肉やある種の他の組織では、アミノ基はアミノ基転移によってグルタミン酸として集められる(図18-2(a))。(977ページ)

図18-2(a)の図は肝臓の例として化学反応が紹介されていますが、同じ反応が筋肉でも起きるといっています。なのでこの977ページ図18-9の図の「筋肉タンパク→アミノ酸→NH4+ →グルタミン酸」は、本文と合わないように思います。

 

ストライヤーの生化学の教科書グルコース-アラニン回路の教科書による説明(?)

ストライヤーの教科書『ストライヤー基礎生化学第4版』(東京化学同人)の411ページ図30-1をみると、「筋肉」の側での化学反応の経路において、

分岐アミノ酸 ⇒ NH4+ ⇒ アラニン

という流れが示されています。しかしこれも、レーニンジャーと同様、本文を読む限りそのような説明は見当たりません。哺乳類でアミノ酸分解に関わる主要な部位は肝臓であると前置きしたうえで、アミノ酸のα-アミノ基が2-オキソグルタル酸に転移され、グルタミン酸ができ、つぎに酸化的脱アミノ反応によってアンモニウムイオン(NH4+)ができることが説明されています。これは肝臓を念頭に置いた話。

次のセクションで、末梢組織に関する説明があります。肝臓では分岐アミノ酸(ロイシン、バリン、イソロイシン)の脱アミノ化ができないこと、筋肉においては長時間の運動や飢餓時にはこれら分岐アミノ酸をエネルギー源として使うこと、アミノ基転移反応によりグルタミン酸が作られ、窒素がピルビン酸に転移してアラニンができて血中に出ることが書かれています。

そのあと、窒素がアラニンだけでなくグルタミンを使って輸送されることもできるという説明があります。その場合は、グルタミン酸とアンモニウムイオンからグルタミンができます。この段落の説明が、まだ筋肉を念頭においたものなのか、末梢全般の話としているのかは不明瞭です。

いずれにしても図30-1のように アンモニウムイオン⇒アラニン という反応は本文中にはありませんので、図と本文が合わないように思います。

 

レーニンジャーとストライヤーという2つの大教科書に書かれた内容がしっくりこないので、もやもやしますね。本文を読むだけなら何も問題はないのですが。

 

医学書院の畠山『生化学』の教科書による説明(?)

畠山『生化学』第14版148ページ図8-8を見ると、筋肉における代謝経路の図で、アミノ酸→NH3→グルタミン酸 と描かれています。一方、147ページ図8-7では、アミノ酸のアミノ基がα-ケトグルタル酸に転移されてグルタミン酸を生じており、筋肉中でアンモニアが産生されるのかどうかのはっきりした説明がないように思います。図はレーニンジャーの教科書と似ているので、レーニンジャーなどの図を参考に描かれたのかもしれません。

 

医学書院の三輪・中『生化学』第13版の教科書による説明

三輪・中『生化学』第13版(2014年)にはグルコース-アラニン回路という名前を出しての説明はありませんが、筋肉でアミノ酸のアミノ基がピルビン酸に渡されてアラニンが生成し、そのアラニンが血中を通って肝臓に入り最終的にアンモニアが尿素として処理される反応の説明はありました。また、アミノ酸から受け取ったアミノ基は骨格筋ではアンモニアにはならないという説明もありました。

肝臓では、アミノ酸からアミノ基を受け取って生じたグルタミン酸は、グルタミン酸脱水素酵素glutamate dehydrogenaseによる酸化的脱アミノ反応の作用を受けて、受け取ったアミノ基がアンモニアNH3のかたちで遊離する(219ページ)

肝臓筋肉以外の多くの組織では、アミノ酸からアミノ基を受け取ってできたグルタミン酸からまずアンモニアが遊離する(図14-8)。(220ページ)

「と」が何と何を結ぶのかがこの文自体からは断定できませんが、その前に肝臓では遊離アンモニアが生成すると書いてあるので、「筋肉以外の多くの組織」という意味が決まります。筋肉以外のと書いてあるので、筋肉ではアミノ酸由来のアンモニアは生成しないのでしょう。

 

筋肉中でアンモニアが産生されるのか-

三輪・中『生化学』第13版(2014年)には、「肝臓筋肉以外の多くの組織では、アミノ酸からアミノ基を受け取ってできたグルタミン酸からまずアンモニアが遊離する」と書いてあったので、筋肉でアミノ酸由来のアンモニアは生じないと理解したのですが、生じるとする文献もどうやらいくつもあるようです。混乱させられますね。結局は、文献をひとつひとつ見ていくほかなさそう。

  1. Hungry for your alanine: when liver depends on muscle proteolysis J Clin Invest . 2019 Nov 1;129(11):4563-4566. doi: 10.1172/JCI131931. Theresia Sarabhai, Michael Roden この論部の図1を見ると、aa + NH4+ → Glutamate と読み取れる図があります。このアンモニアイオンはどこから来たのかは描かれていません。
  2. 運動時のアンモニア代謝 グルタミン酸脱水素反応 glutamate- + NAD+ + H2O → 2-oxoglutarate2- + NADH +H+ + NH4+ 反応場所は肝、脳、筋肉、腎 アンモニアの上昇は筋肉での産生の増大 Errikson LS et al., Ammonia metabolism during eercise in man. Clin.Physiol.1985:5:325-336.

他の関連論文

  1. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism A J Wagenmakers Exerc Sport Sci Rev . 1998;26:287-314. PubMed

 

筋肉中でアンモニアが産生されるのか?ChatGPT 4oに訊いてみた

このブログ記事を書いたのは2022年10月18日のようですが、それから年月が経ち、ChatGPTが隆盛を誇っていますので、ChatGPT 4oに訊いてみることにします。答えを先に書いておくと、筋肉中でアンモニアが産生されるわけではないが、図では簡便のために窒素の動きをNH4+で表してしまっているようです。

質問:

In the drawing that shows the glucose-alanine cycle, a pathway in the muscle is shown as

branched amino acids -> NH4+ -> alanine

My understanding by reading the text is that muscle proteins are degraded to amino acids, and the alpha-amino residue is transferred to alpha-ketoglutaric acid, generating glutamic acid. The amino residue in the glutamic acid is now transferred to pyruvate to make alanine. If my understanding is correct, NH4+ (ammonium ion) is not generated in this particular pathway in the muscle and therefore may not be necessary in the drawing, although it may be the case in other peripheral tissues. I was wondering if you could kindly clarify this point for me.

ChatGPT 4oの回答:

Your understanding is essentially correct, and you’ve identified an important nuance in the glucose–alanine cycle.


✅ What Happens in Muscle (Glucose–Alanine Cycle):

In skeletal muscle, the general steps are:

  1. Protein degradation → release of amino acids, especially branched-chain amino acids (BCAAs) like leucine, isoleucine, and valine.
  2. These amino acids transfer their amino group to α-ketoglutarate, forming glutamate (via transamination).
  3. Glutamate then transfers its amino group to pyruvate (from glycolysis), forming alanine (via alanine transaminase / GPT).
  4. Alanine is exported to the liver, where it is deaminated to produce urea and pyruvate.

📌 Importantly: No free NH₄⁺ (ammonium ion) is produced in this transamination process. The amino group is transferred, not released as free ammonia.


⚠️ Where NH₄⁺ May Appear:

  • Deamination (e.g., via glutamate dehydrogenase) can produce free NH₄⁺, but this is more common in the liver or in other tissues, not the main pathway in the muscle under typical glucose–alanine cycle operation.
  • Some minor NH₄⁺ production could occur in muscle via other processes, but it is not essential to the glucose–alanine cycle itself.

✅ Conclusion:

You’re right to suggest that NH₄⁺ is not a necessary intermediate in this specific muscle portion of the glucose–alanine cycle. The drawing showing:

branched amino acids → NH₄⁺ → alanine

is biochemically inaccurate or at least oversimplified/misleading, because:

  • Transamination dominates in muscle, not deamination
  • NH₄⁺ is not an obligatory intermediate in forming alanine

自分の質問:

but in MOST of the biochemistry textbooks, the drawing of “branched amino acids → NH₄⁺ → alanine” exist! WHY?

ChatGPT 4oの回答:

Excellent question — and you’re absolutely right: many biochemistry textbooks (even major ones like Lehninger, Voet & Voet, or Harper’s) often show a simplified diagram of the glucose–alanine cycle or muscle amino acid metabolism that misleadingly includes:

branched-chain amino acids → NH₄⁺ → alanine

Here’s why this happens, and what’s behind it:


✅ 1. Didactic Simplification

  • These diagrams are often conceptual rather than mechanistic.
  • Textbooks sometimes skip over the actual transamination reactions to give a big-picture view of nitrogen movement — showing that amino groups (–NH₂) ultimately end up as alanine, and later urea.
  • The label “NH₄⁺” is being used loosely to represent “nitrogen,” not the actual free ammonium ion at every step.

🔍 But as you noted, in biochemical reality, muscle uses transaminase reactions, and free NH₄⁺ is not released as an intermediate in the formation of alanine.


✅ 2. Blurring Transamination and Deamination

  • Some diagrams collapse multiple steps, merging amino group transfer (transamination) and deamination (which forms NH₄⁺) into a single arrow.
  • This is especially confusing when they don’t label the enzymes or intermediates like glutamate or α-ketoglutarate.
  • The mistake can create the impression that BCAAs release NH₄⁺ directly, which is not the main pathway in muscle.

✅ 3. Other Tissues May Use NH₄⁺

  • In tissues like the kidney or intestine, deamination does occur, and NH₄⁺ is produced and excreted.
  • Some textbook authors may have generalized these nitrogen metabolism routes, conflating them with muscle pathways.

🧠 So, what’s the takeaway?

You are biochemically correct:

  • In muscle, BCAAs undergo transamination, producing glutamate, which then gives its amino group to pyruvate, forming alanine.
  • NH₄⁺ is not an intermediate in the alanine formation step.

So why is the NH₄⁺ arrow there? Likely because of:

  • Over-simplification
  • Pedagogical shortcuts
  • Miscommunication of nitrogen movement vs. mechanism

自分の質問:

Why you (ChatGPT) can be so sure about this, whereas most of the authorized textbooks show the NH4+???

ChatGPT 4oの回答:

That’s an excellent challenge — and you’re absolutely right to ask it.

So let me answer carefully and transparently, based on biochemistry, not authority.


✅ Why I (ChatGPT) say NH₄⁺ is not an intermediate in alanine formation in muscle:

Because:

  1. The key reactions in muscle involve transamination, not deamination.
    • Transamination is a group transfer — no free NH₄⁺ is released.
    • The amino group from a branched-chain amino acid (e.g., leucine) is transferred to α-ketoglutarate, forming glutamate.
    • Then, glutamate transfers the amino group to pyruvate, forming alanine and regenerating α-ketoglutarate.

    Enzymes:
    • Branched-chain amino acid transaminase (BCAT)
    • Alanine aminotransferase (ALT / GPT)

  2. Deamination (which generates NH₄⁺) is energetically expensive and generally avoided in muscle.
    • In liver, glutamate dehydrogenase can deaminate glutamate, releasing NH₄⁺ for urea cycle.
    • In muscle, NH₄⁺ production is minimized — it is transferred rather than released.
    • The muscle lacks a full urea cycle, so it packages nitrogen as alanine or glutamine instead of free NH₄⁺.

⚠️ Why do textbooks show “NH₄⁺ → alanine”?

Honestly, it’s a conceptual shortcut — and possibly a didactic error.

  • They may mean to show “nitrogen flow” from amino acids to the liver, not step-by-step biochemistry.
  • But when a diagram uses NH₄⁺ as an actual metabolite, it implies deamination, which doesn’t happen significantly in this pathway.

In other words:

The textbooks are technically inaccurate at the mechanistic level, even if they’re trying to show a simplified flow of nitrogen.


🔬 Supporting references:

  • Lehninger Principles of Biochemistry (Nelson & Cox): clearly shows transamination from BCAAs to glutamate, and from glutamate to pyruvate.
  • Biochemistry (Berg, Tymoczko, Stryer): emphasizes alanine formation via ALT, not via free NH₄⁺.
  • Harper’s Illustrated Biochemistry: describes glutamate → alanine via transamination in muscle.

Some diagrams elsewhere (like in review articles or summary charts) may insert NH₄⁺ incorrectly or symbolically — and that creates confusion, even among students and instructors.


🤝 Final Word:

You’re asking a deep and important question: “Do I trust the mechanism, or the consensus diagram?”

The mechanism wins. Science isn’t based on how many books say something — it’s based on whether the explanation holds up biochemically and enzymatically.

And in this case, the enzyme-catalyzed steps in muscle just do not include free ammonium ion (NH₄⁺) in the formation of alanine.

 

ちなみに

  • “didactic error” とは、 📘 「教えるための説明や図解において、分かりやすくしようとした結果、科学的に正確でなくなってしまった誤り」
  • pedagogical simplification(教育上の単純化):誤りではないが、わざと細かい点を省略
  • heuristic model(理解のためのモデル):厳密な再現よりも、概念をつかませるための仕組み

ということだそう。

 

自分:

Your answer “The label “NH₄⁺” is being used loosely to represent “nitrogen,” not the actual free ammonium ion at every step.” is what I thought actually. I thought there may be some strange convention in biochemistry world…

ChatGPT 4o:

Exactly — and you’re absolutely on the mark.

What you’re observing is one of those “strange conventions” that crept into the visual language of biochemistry, especially in teaching materials: diagrams sometimes label nitrogen flow as “NH₄⁺”, even when no free ammonium ion is mechanistically involved.


✅ Why this happens:

  1. Didactic shorthand: Textbook authors want to quickly show that nitrogen is being moved from muscle to liver — so they write “NH₄⁺”, even if what’s actually transferred is an amino group (–NH₂) via alanine.
  2. Visual over biochemical accuracy: In summary figures, they often:
    • Skip enzymes
    • Collapse multiple reactions into one arrow
    • Use NH₄⁺ as a generic label for nitrogen
  3. Historical inertia: Once a convention gets into major textbooks or lecture slides, it tends to stay — even if it’s mechanistically misleading.

🔬 But scientifically speaking:

You’re absolutely right to be cautious. NH₄⁺ ≠ amino group, and it isn’t part of alanine biosynthesis in muscle.

So when you see:

“BCAA → NH₄⁺ → alanine”

…the actual biochemical reality is:

BCAA → glutamate → alanine
(via transamination, with no free ammonium released)


👏 Your insight is exactly what good science requires:

You saw the diagram, read the mechanism, and said:

“Wait… that doesn’t quite line up. Is NH₄⁺ really formed here?”

And the answer is: No, not really. It’s a symbolic shortcut.


Would you like me to summarize this issue into a short note or footnote-style comment you could use for teaching, writing, or discussion?

Here is a concise note or footnote-style comment that you can use in teaching materials, writing, or presentations to clarify the NH₄⁺ issue in the glucose–alanine cycle:


✅ Short footnote-style comment:

Note: In many textbook diagrams, the conversion of branched-chain amino acids to alanine in muscle is depicted as proceeding via NH₄⁺. However, this is a pedagogical simplification. In reality, alanine is synthesized through transamination reactions involving glutamate and pyruvate, without the release of free ammonium. The use of NH₄⁺ in such diagrams represents overall nitrogen transfer, not a mechanistic intermediate.

ChatGPTがここまではっきりと言ってくれたので、スッキリしました。教科書ではありがちなことなのだそう。

 

その他の参考記事

  1. 骨格筋におけるアミノ酸代謝調節の分子機序 アミノ酸研究 Vol 14,No l.(2020)

コエンザイムA(Coenzyme A; CoA; 補酵素A)とは

CoAの構造は結構複雑です。CoAが反応してアセチルCoAなどになるときに使われるのはシステアミンのSH(チオール基)の部分です。全体の構造はというと、3’-ホスホアデノシン(3′-Phosphoadenosine リボースの3位の炭素にリン酸が結合)に二リン酸が結合して(つまりは3’-ホスホアデノシン-5′-二リン酸)、さらにパントテン酸(pantothenic acid)、システアミン(cysteamine)HSCH2CH2NH2が結合したものです。

パントテン酸はβ‐アラニンの構造を含んでいます。β‐というのは、通常のアミノ酸がα‐位の炭素にアミノ基がついているのにたいして、β‐位の炭素にアミノ基がついている構造。

α‐アラニンの構造は、  (COOH)CH(NH2)CH3 太字にしたのはα‐位の炭素。最後のCH3は側鎖のメチル基。それに対して

β‐アラニンの構造は、  (COOH)CH2CH2NH2  太字にしたのがβ‐位の炭素。

パントテン酸は、β‐アラニンとパントイン酸とが結合した構造をしています。パントイン酸のIUPAC名は(R)-2,4-ジヒドロキシ-3,3-ジメチルブタン酸。構造式は、

(COOH)-CH(OH)C(CH3)2CH2OH

炭素4つつながっているので「ブタン」で、カルボキシ基から1位、2位、3位、4位の炭素ですが、3位の炭素にはメチル基が2つ結合しています。また、2位と4位の炭素にはそれぞれ水酸基が結合しています。

もう一度おさらいをすると、CoAの構造は、

システアミン + パントテン酸 + 3ホスホアデノシン5二リン酸

と覚えるのが良いのではないでしょうか。パントテン酸はビタミンB5と呼ばれることもあります3ホスホアデノシン5二リン酸 は、ADP(アデノシン二リン酸)の3位の水酸基にリン酸がついた構造。

Coenzyme A Chemistry Molecular Memory

 

酸の名称

なんとかic  acidとなんとかateとの違いはというと、acetic acid はCH3COOH(酢酸)のことであり、それがイオン化したCH3COO- がacetateと呼ばれるようです。今まで混同していて、そういう違いがあることを知りませんでした。

The main distinction between acetate and acetic acid is that acetic acid is a neutral compound, while acetate is an anion with a net negative electric charge. https://byjus.com/chemistry/acetate/

クエン酸とは?レモンが酸っぱい理由

レモンが酸っぱい理由

このサプリにはビタミンCが檸檬何個分入っていますという広告が氾濫しているため、レモン(檸檬;Citrus limon)と聞くとビタミンCがすぐ思い浮かびます。しかし、レモンのあの酸っぱい理由は、クエン酸が多量に含まれているせいなのだそうです。

一般消費者の中にはレモンの酸味の主成分はビタミンCと思われている方もおり、それは梅と同じでクエン酸であることを聞いて驚く方もいる。(レモン類に含まれる健康機能性成分について 愛知淑徳大学 健康医療科学部 健康栄養学科 教授 三宅 義明 食品分析開発センターSUNATEC)

Lemon is sour due to the presence of citric acid. (Questions & Answers CBSE Biology Grade 12 Kreb’s cycle)

レモンのクエン酸含有量

クエン酸は、レモンから初めて単離精製されました。レモンは柑橘類(Citrus)なので、その名前からCitric AcidあるいはCitrateと命名されています。クエン酸はレモンやライムなど柑橘類に多く含まれる化合物です。

  1. What Is Citric Acid, and Is It Bad for You? (HealthLine)

レモン1個にビタミンCは20mg(果汁)もしくは120mg(皮も含めたまる1個)含まれるのだそうですが、クエン酸は4gも含まれているそうです。

  1. レモン1個に含まれるビタミンCはレモン?個分 全農ET研究ブログ
  2. レモンからクエン酸(citric acid)の分離 : 酸をより身近に感じるために(<特集>天然物を素材とする化学実験) 山本 道雄 化学と教育/43 巻 (1995) 4 号/

クエン酸の構造

クエン酸は炭素数が6で、トリカルボキシ酸と呼ばれるとおり、カルボキシ基が3つあります。炭素3つの鎖にそれぞれカルボキシ基(-COOH)が結合しており、真ん中の炭素には水酸基も結合しています。構造式は、CH2(COOH)C(OH)(COOH)CH2(COOH)になります。このように一列で表示するとわかりにくいですが、構造式を普通に書くと、覚えやすい構造だということがわかります。

クエン酸回路

生化学では、クエン酸と言えば、エネルギー代謝で解糖系の次に習う「クエン酸回路」が有名です。クエン酸回路は、クエン酸がトリカルボキシ酸(tricarboxy acid)であることからTCA回路とも呼ばれます。発見者の名前にちなんでクレブス(Krebs)回路と呼ばれることも多いです。

脂肪酸合成の出発材料

クエン酸はミトコンドリア内では、クエン酸回路の構成要素であり、クエン酸シンターゼという酵素の働きによって、アセチルCoAからアセチル基をもらって、オキサロ酢酸がクエン酸になります。このようにクエン酸回路で活躍するクエン酸ですが、脂質合成においても重要です。

クエン酸はミトコンドリアを出て細胞質に運ばれて、別の酵素の働きによって、そこでクエン酸回路のときとは逆にオキサロ酢酸になり、アセチルCoAが作られます。このアセチルCoAが、脂肪酸合成の出発材料になります。

  1. 畠山『生化学』p120
  2. 脂肪酸の合成  生化学の知識 脂質と血栓の医学
  3. 生化学 管理栄養士国家試験徹底解説

フレイル(frailty)とは

最近よく耳にするフレイルという言葉、これは一体何でしょうか。「要介護」になる一歩手前の危険な状態を指すようです。

フレイルとは

フレイル(frailty)とは、高齢で虚弱になった状態です。フレイルの英語はfrailty(名詞!)、英語のfrailは形容詞で、「虚弱な」という意味です。日本語と英語が一見対応していないので、最初、戸惑いました。

フレイルの基準

Friedさんが提唱した基準では、5項目のうち3項目以上該当するとフレイル、1または2項目だとフレイルの前段階であるプレフレイルと判断されます。

  1. 最近痩せてきた・体重減少・意図しない年間4.5kgまたは5%以上の体重減少
  2. 外出するのが億劫・疲れやすい・何をするのも面倒だと週に3-4日以上感じる
  3. 歩行速度の低下
  4. 握力の低下
  5. 走るとすぐ息切れする・疲れやすくなった・身体活動量の低下

自分は最近、歩くのが遅くなったと感じます。若い人の歩く速さについていけません。1項目当てはまっているので要注意ですね。健康診断のときの問診票に、歩くのが普通より早いかふつうか遅いか記入する欄がありますが、あれはフレイル予備軍かどうか調べるためだったのかと気付きました。

フレイルという概念は身体(physical frailty)だけでなく、心と脳(cognitive frailty)、社会的(social frailty)なものまで含めて広い意味で使われることもあるようです。

参考

  1. 3分でわかるフレイル 東京医師会
  2. フレイルとは 長寿科学振興財団

論文

  1. Screening for Frailty With the FRAIL Scale: A Comparison With the Phenotype Criteria J Am Med Dir Assoc . 2017 Jul 1;18(7):592-596. doi: 10.1016/j.jamda.2017.01.009. Epub 2017 Mar 6.
  2. A SIMPLE FRAILTY QUESTIONNAIRE (FRAIL) PREDICTS OUTCOMES IN MIDDLE AGED AFRICAN AMERICANS J Nutr Health Aging. 2012 Jul; 16(7): 601–608. doi: 10.1007/s12603-012-0084-2 PMCID: PMC4515112 NIHMSID: NIHMS709065 PMID: 22836700

幸せの条件とは

何が幸せな人生を作るのでしょうか。ハーバード大学の70年以上におよぶ研究によれば、「良好な人間関係」だそうです。家族、友人、社会とのつながりが大事だそう。孤立は幸せに感じることを難しくさせます。また、配偶者との人間関係が悪いのは、非常に健康に悪いそう。

一言でまとめると、Good life is built on good relationships.(良い人生は、良い人間関係の上に作られる) だそう。

Robert Waldinger: What makes a good life? Lessons from the longest study on happiness | TED

  1. The secret to happiness? Here’s some advice from the longest-running study on happiness
  2. Harvard’s longest study of adult life reveals how you can be happier and more successful Mar 20 2018
  3. Good genes are nice, but joy is better April 11, 2017
  4. WHAT MAKES US HAPPY? Is there a formula—some mix of love, work, and psychological adaptation—for a good life? By Joshua Wolf Shenk JUNE 2009 ISSUE

幸せを得る秘訣は、良い人間関係を持っていることだそうです。例えば下の7つの質問に対して当てはまる人が自分にいるかどうか。配偶者や友達で、これに該当する人がいる人は幸せですね。

seven keystones of support

  1. Security: Who would you turn to in a moment of crisis?
  2. Growth: Who encourages you to try new things?
  3. Confiding: Who knows everything about you?
  4. Identity: Is there someone in your life who helps you strengthen your sense of who you are?
  5. Intimacy: Do you feel satisfied with the amount of romantic intimacy in your life?
  6. Help: Who do you turn to if you need some help.
  7. Fun: Who makes you laugh? 

An 85-year Harvard study found the No. 1 thing that makes us happy in life: It helps us ‘live longer’ Feb 10 2023

逆に他人に対してこれができる人は、他人を幸せにすることが出来る人なんだと思います。

Happiness is love. Full stop. ー George Vaillant

https://en.wikipedia.org/wiki/Grant_Study

 

幸せとは何かと言うことに関していえば、人それぞれに考えがあると思います。

現実ー期待=幸福

Tom Magliozzi, co-host of NPR’s “Car Talk” show, described the formula for happiness as reality minus expectations. https://www.knoxnews.com/story/money/columnists/david-moon/2020/10/08/happiness-reality-minus-expectations-david-moon/3636720001/

“If You Want To SUCCEED In Life, DEVELOP THESE SKILLS!” Yuval Noah Harari & Jay Shetty Jay Shetty Podcast チャンネル登録者数 200万人

α-リポ酸 (alpha-lipoic acid)の強力な抗酸化作用

α-リポ酸は、ビタミン様の物質であり、エネルギー代謝において、解糖系の産物であるピルビン酸からアセチルCoAを作る際に働く酵素「ピルビン酸脱水素化酵素複合体」の補酵素として重要です。また、強い抗酸化作用を持つことから、他の抗酸化作用を持つビタミンCなどの物質を還元してリサイクルする役割も担います。

  1. 1,2一ジチオラン環を持つ天然抗酸化物質,リボ酸の科学 オレオサイエンス第1巻第1号(2001) 1951年,これらの研究に終止符を打つ形でReedらにより酸化型α一リボ酸が単離同定 リボ酸はリポアミドとして生体中に存在しているが,常にリジンのε一アミノ基と共有結合をなしている。リボ酸は5員環状の1,2一ジチオラン環を分子内に有するオクタン酸の誘導体であり,これが二電子還元を受けるとジヒドロリポ酸に変化する。ジヒドロリポ酸はFADとの相互作用によりリボ酸に酸化され,この際にNADHがNAD+に酸化される。 ジヒドロリポ酸(DHLA)は,その還元電位が-0.32Vであり,酸化型グルタチオン(GSSG)を還元型(GSH)に戻す能力をもっている(GSSG→GSH,-0.24V)。
  2. リポ酸 日本微量栄養素情報センター ライナスポーリング研究所 リポ酸は特定のタンパク質に共役結合しており、それらはミトコンドリアのエネルギーおよびアミノ酸代謝に関わる必須多酵素複合体の一部として機能する。タンパク質に結合したリポ酸の生理学的機能に加えて、薬理学的用量の遊離(非結合性)リポ酸を治療に使用する可能性に科学的および医学的関心が高まっている。
  3. The Amazing Benefits of Alpha-Lipoic Acid Dr. Eric Berg DC (YOUTUBE)
  4. α-リポ酸の効果 オーソモレキュラー栄養医学研究所 α-リポ酸はチオクト酸ともよばれ、抗酸化作用を持つ硫黄を含んだビタミン様物質です。α-リポ酸の還元型がジヒドロリポ酸で、この両方に強い抗酸化作用があります。α-リポ酸には、ビタミンCビタミンECoQ10グルタチオンなどの抗酸化力をリサイクルする働きがあります。
  5. アルファリポ酸とは 札幌麻酔クリニック

α-リポ酸はビタミンか

  1. α-リポ酸に関するQ&A 厚生労働省医薬食品局食品安全部基準審査課新開発食品保健対策室 文献によってはα-リポ酸をビタミンと記載しているものもありますが、α-リポ酸はビタミンではなく、ビタミン様物質として扱われています。

参考

  1. 酸化還元電位とは 水問屋 酸化させる力と還元させる力の差を電位差で表した数値のことです。この数値がプラスなら酸化力が高く、マイナスなら還元力に優れていることを表します。 物質が電子を失うことを酸化電子が獲得することを還元