未分類」カテゴリーアーカイブ

カエルとマウスの発生学から得られた知見の統合:wnt, BMP, nordal, オーガナイザー、神経誘導などについて

 

Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage https://www.biorxiv.org/content/10.1101/2020.07.16.167320v1.full

 

Developmental Cell Volume 1, Issue 5, November 2001, Pages 605-617 Journal home page for Developmental Cell Review Nodal Signaling in Early Vertebrate Embryos: Themes and Variations https://www.sciencedirect.com/science/article/pii/S1534580701000764

TGF-b family signaling gradients during gastrulation. (A ...

TGF-β Family Signaling in Early Vertebrate Development June 2017Cold Spring Harbor Perspectives in Biology 10(6):a033274 DOI:10.1101/cshperspect.a033274 https://www.researchgate.net/figure/TGF-b-family-signaling-gradients-during-gastrulation-A-Embryonic-tissues-patterned-by_fig1_317494952

上肢や下肢が出る位置はどのようにして決まるのか?

上肢や下肢が出る位置はどのようにして決まるのでしょうか?体軸の位置はHOXコードで決まるのだとすれば、ある特定のHOX遺伝子産物が転写制御因子となって上肢や下肢の肢芽で発現するTbx5やTbx4の発現を直接制御するのでしょうか(エンハンサーかプロモーターに特異的に結合するなどして)?

下の総説によれば、HOX遺伝子が活性化や抑制に働くようです。

A Combination of Activation and Repression by a Colinear Hox Code Controls Forelimb-Restricted Expression of Tbx5 and Reveals Hox Protein Specificity Satoko Nishimoto,Carolina Minguillon,Sophie Wood,Malcolm P. O. Logan Published: March 20, 2014 https://doi.org/10.1371/journal.pgen.1004245

最近の総説論文を読むと, HOXコードで前肢の出る位置は決まるようですが、そう単純ではなさそうです。ただTbx5はFgf10遺伝子のプロモーターに直接結合して発現を誘導するそうです。下肢については、前肢ほどには研究がなされておらず、HOXコードで位置が規定されるのか、FGF10を発現させるものが何なのかについては報告がなさそうです。

  1. Current research on mechanisms of limb bud development, and challenges for the next decade Takayuki Suzuki Genes & Genetic Systems/Volume 99 (2024) https://www.jstage.jst.go.jp/article/ggs/99/0/99_23-00287/_html/-char/en 

 

  1. Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo Development (2003) 130 (3): 623–633. https://journals.biologists.com/dev/article/130/3/623/42069/Tbx5-is-essential-for-forelimb-bud-initiation
    1. mouse embryos lacking Tbx5 do not form forelimb buds
    2. Tbx5 directly activates the Fgf10 gene via a conserved binding site, providing a simple and direct mechanism for limb bud initiation
  2. Tbx5 is required for forelimb bud formation and continued outgrowth Development . 2003 Jun;130(12):2741-51. doi: 10.1242/dev.00473.

Fig. 3. Antero-posterior limb polarity. (A) Major regulatory interactions involved in the specification of forelimb field antero-posterior polarity. Retinoic acid (RA) signalling is implicated in the defined anterior to posterior order of expression of Hox5-Hox9 paralogous group (PG) genes in presumptive forelimb regions of the lateral plate mesoderm (LPM). Hox5 PG proteins repress anterior Shh expression indirectly through activation of Plzf. Gata4 and Gata6 proteins transcriptionally inhibit Shh and attenuate Shh signal transduction by promoting the repressor form of Gli3. RA stimulates the posterior expression of Hand2, the product of which both represses Gli3 in the posterior part of the limb bud and stimulates Shh expression at the posterior margin. Gli3 also represses Hand2. Sall4 is expressed in the presumptive forelimb and its protein product contributes to the expression of Gli3. (B) Major regulatory interactions involved in the specification of hindlimb field antero-posterior polarity. Gata6 directly represses anterior expression of Shh. Sall4, Irx3 and Irx5 regulate Gli3 expression anteriorly. Isl1 indirectly promotes the posterior expression of Shh in the hindlimb by inducing Hand2, which represses Gli3 in the posterior part of the hindlimb. A, anterior; P, posterior.

https://journals.biologists.com/dev/article/147/17/dev177956/225797/Establishing-the-pattern-of-the-vertebrate-limb

notchは原始線条nodeのmotile ciliaをもつ細胞でnodal遺伝子発現を誘導するか

左右差を生み出す最初の仕組みは、マウスの場合は原始結節(2層の細胞層)の下側(中胚葉由来である脊索が脊索板になって内胚葉の層と一体化している)の細胞がもつ線毛の回転により左向きの水流が生じて、それを原始結節の両側に存在する動かない線毛を持つ細胞が感知して、左側に特異的な遺伝子発現を始めるというものでした。

動かない線毛を持つ細胞は左右両側にありますが、その線毛に存在するカルシウムチャンネルPkd2は正中線側に偏って存在しているため、左向きの水流で曲げられた線毛の正中線側の部分は、左側の細胞では引っ張られ、右側の細胞では表面が縮まることになります。張力によって開くカルシウムチャネルPkd2は、左側でのみ開くので、Ca濃度上昇に依存した細胞内の変化が、特異的な遺伝子発現につながるわけです。その細胞内変化とはどのようなものでしょうか。

notchは原始線条nodeのmotile ciliaをもつ細胞でnodal遺伝子発現を誘導するのでしょうか?

  1. Notch signaling regulates left–right asymmetry determination by inducing Nodal expression Luke T Krebs 1,4, Naomi Iwai 2,3,4, Shigenori Nonaka 2,3, Ian C Welsh 1, Yu Lan 1,5, Rulang Jiang 1,5, Yukio Saijoh 2, Timothy P O’Brien 1, Hiroshi Hamada 2,3,6, Thomas Gridley 1,7 Genes Dev. 2003 May 15;17(10):1207–1212. doi: 10.1101/gad.1084703 https://pmc.ncbi.nlm.nih.gov/articles/PMC196059/
  2. Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination Ángel Raya, Yasuhiko Kawakami, Concepción Rodríguez-Esteban, Marta Ibañes, Diego Rasskin-Gutman, Joaquín Rodríguez-León, Dirk Büscher, José A. Feijó & Juan Carlos Izpisúa Belmonte Nature volume 427, pages121–128 (2004) figure 1
  3. Notch activity induces Nodal expression and mediates the establishment of left–right asymmetry in vertebrate embryos Genes Dev. 2003 May 15;17(10):1213–1218. doi: 10.1101/gad.1084403 https://pmc.ncbi.nlm.nih.gov/articles/PMC196060/
  4. Developmental Biology Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left–right axis formation Developmental Biology Volume 376, Issue 1, 1 April 2013, Pages 23-30  https://www.sciencedirect.com/science/article/pii/S0012160613000365?via%3Dihub

カエルのオーガナイザーその他のシグナル分子の遺伝子のマウス胚での発現

カエルの発生学で分子シグナルが詳細に調べられてきましたが、それらの分子がマウス胚でも同様の働きをもつのかどうかの情報の整理が大変です。

Goosecoid

  1. Goosecoid Regulates the Neural Inducing Strength of the Mouse Node Developmental Biology Volume 216, Issue 1, 1 December 1999, Pages 276-281
  2. Gastrulation in the mouse: the role of the homeobox gene goosecoid M BlumSJ GauntKWY Cho, H Steinbeisser, B Blumberg, D Bittner, EM De Robertis Cell, 1992 本文有料
  3. TGIF1 and TGIF2 regulate Nodal signaling and are required for gastrulation.  January 2010Development 137(2):249-59 DOI:10.1242/dev.040782 https://www.researchgate.net/figure/Regulation-of-goosecoid-expression-by-Tgifs-AEmbryos-of-the-indicated-ages-and_fig6_40812258 Regulation of goosecoid expression by Tgifs. (A)Embryos of the indicated ages and genotypes were analyzed for expression of goosecoid by in situ hybridization. The brackets indicate the extra-embryonic region. Arrowheads indicate expression in the extraembryonic region. (B)A goosecoid promoter reporter construct was used to test repression by co-expressed Tgif1 (+, 20 ng/well, ++, 50 ng/well) in transfected HepG2 cells. Cells were treated with TGFb, as indicated. Results are presented as means±s.d. of triplicate transfections, normalized to a Renilla luciferase control. Activity in the presence of Tgif1 was significantly different from the control (*P<0.05, **P<0.01), as determined by Student's t-test. (C)Expression of goosecoid in 8.0 dpc embryos of the indicated genotypes was analyzed by in situ hybridization. (D)Sections through the embryos in C. All in situ images are representative of at least three embryos. Scale bars: 250mm in A,C; 100mm in D. 
    (C)Expression of goosecoid in 8.0 dpc embryos of the indicated genotypes was analyzed by in situ hybridization. (D)Sections through the embryos in C.

    Cがgoosecoidの発現。nodeに局在していることがわかります。

Chordin

下の図でaがchordinのin situ hybridazation (mRNAの局在)です。bcはnoggin遺伝子の発現。chordinは原始線条の前側で発現しはじめて原始結節に局在したと本文で説明されていますが、図には向きなどの記載がなくわかりにくいです。Chordin遺伝子をのノックアウトしても表現型は意外なくらいマイルド(図efg)なようです。

Figure 1

The organizer factors Chordin and Noggin are required for mouse forebrain development Nature volume 403, pages658–661 (2000) 10 February 2000  https://www.nature.com/articles/35001072

wntシグナリング分子

https://www.semanticscholar.org/paper/Wnt-signalling-in-mouse-gastrulation-and-anterior-Arkell-Fossat/1ebceb654e1ea878ac1bd663735be63e1a14a0fb

Canonical Wnt Signaling and Its Antagonist Regulate Anterior-Posterior Axis Polarization by Guiding Cell Migration in Mouse Visceral Endoderm Developmental Cell Volume 9, Issue 5, November 2005, Pages 639-650 https://www.sciencedirect.com/science/article/pii/S1534580705003734

体軸形成に関する最近の総説

 

最近の総説&原著論文

  1. In vitro modelling of anterior primitive streak patterning with human pluripotent stem cells identifies the path to notochord progenitors Posted April 22, 2024. bioRxiv https://www.biorxiv.org/content/10.1101/2023.06.01.543323v3.full
  2. Recent advances in understanding cell types during human gastrulation Semin Cell Dev Biol. 2022 May 21;131:35–43. doi: 10.1016/j.semcdb.2022.05.004 https://pmc.ncbi.nlm.nih.gov/articles/PMC7615356/
  3. The Organizer and Its Signaling in Embryonic Development J Dev Biol. 2021 Nov 1;9(4):47. doi: 10.3390/jdb9040047 Figure 1 https://pmc.ncbi.nlm.nih.gov/articles/PMC8628936/ MDPI誌オープンアクセス論文
  4. Mesoderm induction and patterning: insights from neuromesodermal progenitors Semin Cell Dev Biol. 2021 Nov 25;127:37–45. doi: 10.1016/j.semcdb.2021.11.010
  5.  A gene regulatory program controlling early Xenopus mesendoderm formation: network conservation and motifs  Semin Cell Dev Biol. 2017 Mar 22;66:12–24. doi: 10.1016/j.semcdb.2017.03.003
  6. Vertebrate Axial Patterning: From Egg to Asymmetry Adv Exp Med Biol. 2017;953:209–306. doi: 10.1007/978-3-319-46095-6_6  https://pmc.ncbi.nlm.nih.gov/articles/PMC6550305/

心臓はなぜ左側にできるのか?左右軸の決定機構との関係

人間の体は外側から見ると一見、左右対称ですが体の中を見ると、心臓が左側にあり、肝臓は右側にあります。肺の枝の分岐パターンにも左右で違いがあります。これらの左右の違いは、いつ、どのように生じたのでしょうか?

 

Relationship between asymmetric nodal expression and the direction of embryonic turning Published: 09 May 1996  Jérôme Collignon, Isabella Varlet & Elizabeth J. Robertson Nature volume 381, pages155–158 (1996)

マウスの胚における非対称な nodal 発現は、心臓のループ方向と胚の回転と相関しており、左右の体軸経路が脊椎動物で保存されていることを示しています。

ニュークープセンター Nieuwkoop Center :アフリカツメガエルにおけるオーガナイザーの誘導メカニズム

ニュークープセンターは、オーガナイザーを誘導するセンターという概念です。カエルの胞胚の時期にアニマルキャップと植物極側とに分けて、くっつけて培養したおtきにアニマルキャップ(外胚葉)から中胚葉が誘導されたことから生じた概念です。

したのレビュー論文は非常に網羅的で、かつ、歴史的な経緯や解釈が詳しくて勉強になります。

figure 1 figure 3

Molecular specification of germ layers in vertebrate embryos 14 December 2015 Cellular and Molecular Life Sciences  Volume 73, pages 923–947, (2016) https://link.springer.com/article/10.1007/s00018-015-2092-y

  1. The organization center of the amphibian embryo: its origin, spatial organization, and morphogenetic action P D Nieuwkoop PMID: 4581327 DOI: 10.1016/b978-0-12-028610-2.50005-8 Adv Morphog . 1973:10:1-39. doi: 10.1016/b978-0-12-028610-2.50005-8.

二次軸を形成する背側化因子

β-カテニン

Fig. 1. (A) A secondary axis can be induced in developing Xenopus embryos by injection of RNA encoding β-catenin into a ventral cell of 4-cell stage embryos. Ventral cells are usually distinguished by their larger size and darker pigment compared to dorsal cells. For detailed methods see (Kuhl and Pandur, 2008a). (B) The duplicated axis is visible in neurula stage embryos within 2 days of injection. Embryos in these images have undergone in situ hybridisation for neuralβ-tubulin to illustrate the bilateral stripes of primary neurons and trigeminal https://www.researchgate.net/publication/272524241_An_oncologist%27s_friend_How_Xenopus_contributes_to_Cancer_research/figures

シングルセル解析による発生学研究

 

シングルセル解析は強力な手段です。発生学研究におけるゲームチェンジャーとも言えそうです。

Fig. 2

Published: 14 March 2022 Systematic reconstruction of cellular trajectories across mouse embryogenesis Nature Genetics volume 54, pages328–341 (2022) https://www.nature.com/articles/s41588-022-01018-x

左側だけで発現する遺伝子Lefty, Nodal

Leftyの発見

  1. Left-right asymmetric expression of the TGF beta-family member lefty in mouse embryos C Meno 1, Y Saijoh, H Fujii, M Ikeda, T Yokoyama, M Yokoyama, Y Toyoda, H Hamada Nature . 1996 May 9;381(6578):151-5. doi: 10.1038/381151a0. https://pubmed.ncbi.nlm.nih.gov/8610011/ 本文有料

総説

  1. Molecular and cellular basis of left–right asymmetry in vertebrates Hiroshi HAMADA Proceedings of the Japan Acade …/Volume 96 (2020) Issue 7/Article overview/Full view Reviews PDF https://www.jstage.jst.go.jp/article/pjab/96/7/96_PJA9607B-04/_pdf/-char/en

Lefty-1とLefty-2の違い

文献によってLeftyと総称されていたり、Lefty-1の局在が左側のみだったり正中線上だけだったり相違があるのはなぜでしょうか。アミノ酸配列や塩基配列が似ているため、どちらを検出しているかが見分けにくいためなのかもしれません。

1995年から1996年にかけてNodal遺伝子(TGFβスーパーファミリーに属する分泌蛋白)及びLefty1/2遺伝子(NODALのアンタゴニストである分泌蛋白)の胚における左右非対称な発現が発見され https://jpccs.jp/10.9794/jspccs.33.349/data/index.html

  1. Developmental Biology Volume 256, Issue 1, 1 April 2003, Pages 161-173 Developmental Biology Regular article Left–right patterning of the mouse lateral plate requires nodal produced in the node Author links open overlay panel Yukio Saijoh a , Shinya Oki a , Sachiko Ohishi a , Hiroshi Hamada a https://www.sciencedirect.com/science/article/pii/S0012160602001215

下の報告書の図だと、Lefty1は左に局在していません。?

戦略的創造研究推進事業 CREST 研究領域「生物の発生・分化・再生」 研究課題「形態の非対称性が生じる機構」 研究終了報告書 研究期間 平成12年11月~平成17年10月 研究代表者:濱田 博司 (大阪大学大学院生命機能研究科、教授)

論文Multiple left-right asymmetry defects in Shh2/2 mutant mice unveil a convergence of the Shh and retinoic acid pathways in the control of Lefty-1  の図でもLefty-1は正中線上にしか局在していません。論文の記述(下)をよくよく読んだら、Lefty-1は将来floor plate(神経管の底板)になるところの左側に局在しているのだそうです。弱拡大の写真だとよくわかりませんでした。

In the mouse, Lefty-1 is predominantly expressed in the left prospective floor plate, whereasLefty-2 is expressed more strongly in the left LPM. In Lefty-12/2 mouse embryos, Nodal, Lefty-2, and Pitx2 are ectopicallyexpressed on the right side (4).
(2) (PDF) Multiple Left-Right Asymmetry Defects in Shh-/- Mutant Mice Unveil a Convergence of the Shh and Retinoic Acid Pathways in the Control of Lefty-1. Available from: https://www.researchgate.net/publication/12800556_Multiple_Left-Right_Asymmetry_Defects_in_Shh–_Mutant_Mice_Unveil_a_Convergence_of_the_Shh_and_Retinoic_Acid_Pathways_in_the_Control_of_Lefty-1

Lefty-1とLefty-2の発現場所の違いに関しては下の図がわかりやすいです。

Pediatric Cardiology and Cardiac Surgery 33(5): 349-361 (2017)

臓器錯位症候群の発生機序 八代 健太1,宮川 繁2,3,澤 芳樹3 1 大阪大学大学院医学系研究科心臓再生医療学共同研究講座 2 大阪大学大学院医学系研究科先進幹細胞治療学共同研究講座 3 大阪大学大学院医学系研究科心臓血管外科学 発行日:2017年9月1日 日本小児循環器学会雑誌 https://jpccs.jp/10.9794/jspccs.33.349/data/index.html

Shhの役割

  1. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination Yosuke Tanaka, Yasushi Okada & Nobutaka Hirokawa Nature volume 435, pages172–177 (2005) Published: 12 May 2005
  2. Multiple left-right asymmetry defects in Shh2/2 mutant mice unveil a convergence of the Shh and retinoic acid pathways in the control of Lefty-1 Proc. Natl. Acad. Sci. USAVol. 96, pp. 11376–11381, September 1999https://www.researchgate.net/publication/12800556_Multiple_Left-Right_Asymmetry_Defects_in_Shh–_Mutant_Mice_Unveil_a_Convergence_of_the_Shh_and_Retinoic_Acid_Pathways_in_the_Control_of_Lefty-1

結局 shh → Lefty-1 → Lefty-2, Nordal → Pitx2 → 下流の出来事 という図式でしょうか。

 

そもそもの非対称性の出現メカニズム

左側のみで初期に発現する遺伝子が見つかったので、その遺伝子が左右差をつくるんだという理解でいいかというと、そもそもその遺伝子発現の差はどうやって生まれたのか?という疑問に答得られていません。

「左右の対称性は最初にいかにして破られるのか?」、「Nodal やLefty の非対称な発現は、どのようにしてもたらされる?」という根本的な問題はいまだに解決されていない。

戦略的創造研究推進事業 CREST 研究領域「生物の発生・分化・再生」 研究課題「形態の非対称性が生じる機構」 研究終了報告書 研究期間 平成12年11月~平成17年10月 研究代表者:濱田 博司 (大阪大学大学院生命機能研究科、教授)

左右の非対称性が生じるメカニズムに関する数々の疑問

5年間の目標として掲げたことのなかでも、とくに以下の問題に重点を置いた。

  1. 左右の対称性が破られる機構:とくに、ノード流は左右を決めているのか? 繊毛の回転運動からなぜ左向きの水流が生じる? という問題。
  2. ノードで生じた非対称なシグナルは、どのようにして側板へ伝わる?
  3. Nodal, Lefty タンパク質の分泌後の挙動:とくに、分泌後のタンパク質を可視化し、その拡散速度・拡散様式や分解・安定性を観察すること。
  4. 左右決定に関する実験データを再現できる数理モデルを構築し、in vivo の現象の裏にある原理を予測する。
  5. 前後が決定される機構、とくに細胞移動の制御機構を解明すること。

戦略的創造研究推進事業 CREST 研究領域「生物の発生・分化・再生」 研究課題「形態の非対称性が生じる機構」 研究終了報告書 研究期間 平成12年11月~平成17年10月 研究代表者:濱田 博司 (大阪大学大学院生命機能研究科、教授)