共分散構造分析とは:講義ノート(チュートリアル)や解説書などの紹介

複数の要因(独立変数)で、「結果」がどのように説明できるかを調べる手法が重回帰分析ですが、重回帰分析においては、個々の独立変数が互いに影響しあっていない(多重共線性が無い)ことが必要です。しかし多くの場合には、互いに影響しあっているため、それを考慮できる方法としてパス解析があります。パス解析では観測できる量だけからなる独立変数、従属変数の関係性を調べますが、さらには、直接には観測できない量(例えば、性格の朗らかさ)も想定した関係性を調べたい場合に、共分散構造分析が使われます。

共分散構造分析という言葉は、構造方程式モデリング(Structural equation modeling; SEM)とほぼ同義に使われているようです。共分散分析(ANCOVA)は共分散構造分析と名前が似ていて紛らわしいですが別物のようです。

  1. 共分散構造分析の基礎と実際—-基礎編—-狩野 裕(大阪大学大学院人間学研究科 2002年11月11日SSJデータ・アーカイブ  第66回公開セミナー: StructuralEquationModeling構造方程式モデル(モデリング)–近年は共分散構造分析よりもメジャーな名称

共分散構造分析とは

  1. 共分散構造分析を行う際は最初に仮説を立て、構造モデルを作る必要があります。
  2. 仮説を立ててモデルを作ったものの、想定した要素を表すデータがとれないと共分散構造分析を行うことができません
  3. 共分散構造分析はたくさんの要素間の関係性を一度に計算することができます。これは相関分析や重回帰分析などではできないことで、共分散構造分析の最大のメリットです。
  4. CFIの値はこのモデルの適合度(妥当性)を表す指標の一つで、0から1までの範囲に収まります。1に近いほど適合が良く、一般には0.95以上であればよいモデルと判断します。

https://www.nttcoms.com/service/research/dataanalysis/sem/  NTTコムオンライン

共分散構造分析とは、わかりやすく言うと、直接観測できない「潜在変数」を導入し、導入した潜在変数と観測変数との間の因果関係を同定する統計学的手法のことです。

  1. 共分散構造分析の基礎と実際—-基礎編—- SSJデータ・アーカイブ第6回公開セミナー 2002年年11月月11日
  2. 共分散構造分析の基礎と実際—-応用編—- 狩野 裕(大阪大学大学院人間学研究科)
  3. 共分散構造分析 多変量解析の手法別解説 統計分析研究所アイスタット

共分散構造分析と重回帰分析との違い

単回帰分析、重回帰分析、パス解析、共分散構造分析(SEM)の違いは、下のサイトの図がわかりやすい。

  1. 単回帰分析・重回帰分析・共分散構造分析とパス解析 GMORESEARCH

従属変数(結果)が1個、独立変数(要因)が1個でそれらの関係を調べるのが単回帰分析。要因が複数、つまり独立変数が複数あってそれらと従属変数との関係を調べるのが重回帰分析。独立変数同士にも関連性があることを想定した解析手法が、パス解析。測定可能ではない量「潜在変数」まで考えて関連性を調べることができるのが共分散構造分析ということになります。

共分散構造分析におけるパス解析(パス図)とは

仮説的なパス図を描く上での決め事があります。アンケート調査や観測によって得られたデータを「観測変数」といい、 パス図では四角に囲んで表現します。また、アンケート調査や観測では得られなかったが、仮説的に存在するであろうと思う変数項目を 「潜在変数」と言い、パス図では楕円で囲んで表現します。因果関係において原因に当たる変数を「原因項目」、 結果に当たる変数を「結果項目」とし、それぞれを矢印の始点と終点で結びます。原因項目同士の因果関係を表す場合、 その項目間の時間的な意味を勘案して時間的に前にある項目を始点とします。

https://www.cross-m.co.jp/analysis/amos/

  1. パス解析 日経リサーチ
  2. 顧客理解を可能とするパス解析|因果関係を徹底的に探る KOTODORI
  3. 分析2:調在データの分析 人工知能学会誌21巻5号(2006年9月
  4. パス解析とは?共分散構造分析との違いもわかりやすく解説2021年10月04日 GMO RESEARCH https://gmo-research.ai/research-column/path-analytics

構造方程式モデリングとは

  1. SEMは心理学に何をもたらしたか? The Annual Report of Educational Psychology in Japan2020, Vol. 59, 292-303 ・時流に乗った,数学的には高度な新しい分析法を使った,脱常識性が感じられない研究,データと大きく乖離した主張をしている研究の量産 ・時流に乗った,数学的には高度な新しい分析法を使った研究が優れた研究であるという思い込み(?)の蔓延 ・データの収集法に関して工夫をして,脱常識性の高い因果関係を提示しようとする姿勢の阻害・相関と因果,測定の妥当性,相関的研究における変動因の問題などの,心理学にとって基本的で非常に重要なことを踏まえない傾向の助長
  2. 製品開発のためのマーケティングリサーチへの構造方程式モデリングの応用
  3. SEMによる因果分析入門–パス解析から傾向スコアまで– 大阪大学 大学院基礎工学研究科 狩野 裕
  4. 産後の抑うつ状態の複雑な予測

共分散構造分析の手順

SPSSによる共分散構造分析

Rによる共分散構造分析

『共分散構造分析 R編』

pythonによる共分散構造分析

エクセルによる共分散構造分析

共分散構造分析の教科書

『共分散構造分析 入門編』

『共分散構造分析 応用編』

『共分散構造分析 疑問編』

SPSSとAmosによる心理・調査データ解析

小塩真司『SPSSとAmosによる心理・調査データ解析 : 因子分析・共分散構造分析まで』第3版  東京図書, 2018.

図解でわかる共分散構造分析

涌井良幸, 涌井貞美『図解でわかる共分散構造分析 : データから「真の原因」を探り出す新しい統計分析ツール』日本実業出版社, 2003.

 

参考

  1. 統計分析法の分類  予測・説明関係を検討する統計的検定法の分類 予測・説明関係を検討する多変量データ解析法の分類
  2. 看護学における多変量解析の利用―国内文献の検討結果から― 飯島 純夫
  3. 高等教育研究のための計量手法の整理 中尾走、樊怡舟 広島大学大学院教育学研究科 広島大学高等教育研究開発センター(RIHE)では,大学教員に対する調査がこれまで何度も行われており,研究生産性というテーマで大学教員の論文数を従属変数にして分析
  4. 構造方程式モデリングは,因子分析,分散分析,パス解析のすべてにとって代わるのか? 狩野 裕 行動計量学 第29巻第 2号 (通巻57号)2002年,138~159
  5. 「討論:共分散構造分析」の特集にあたって 豊田秀樹  行動計量学 第29巻第 2号 (通巻57号)2002年,135~137