好気的解糖とは、酸素が存在するにもかかわらずエネルギー生産のために、酸化的リン酸化(電子伝達系において酸素が使われてH+勾配が作り出されてそれを利用してADPがATPにリン酸化される経路)を使わずに、解糖系のみを使うことです。
通常、酸素存在下では、解糖系の最終産物であるピルビン酸がアセチルCoAに変換されたのちTCA回路に入り、TCA回路で産生されたNADHとFADH2が電子供与体として、電子伝達系に電子を供与します。
NADH ⇒NAD + H+ + e-
FADH2 ⇒FAD + 2H+ + 2e-
上の式の右側にH⁺(プロトン)とe-(電子)が2つずつできています。これらの電子が、電子伝達系に渡されて、プロトンは内膜を横切って、プロトン濃度の高い側へと汲み上げられるわけです。つまり、ミトコンドリアの内膜の内外のプロトン濃度勾配としてエネルギーが貯められていることになります。このH+勾配を利用して、H+が勾配に沿って移動するときにADPがリン酸化されてATPが産生されます。
電子伝達系において、酸素は電子を受け取る側になります。
1/2 O2+2H+ + 2e- ⇒ H2O
好気的 というのは、酸素が存在する環境という意味です。好気的解糖といった場合、酸素が存在する環境における解糖 という意味であって、酸素を利用した解糖 という意味ではありませんでした。しばらく間違って理解していました。
- 好気的 看護roo!
好気性細菌(酸素が存在する条件でも、もしくは、酸素が存在する条件のみで生育する細菌)、嫌気性細菌(酸素が存在しない条件で生育する細菌)という言葉があるためか、自分は好気的というのは酸素を使うものだと思い込んでいました。
Warburg効果
好気的解糖はWarburg効果とも呼ばれます。
Otto Warburgが観察した現象で,がん細胞は有酸素下でもミトコンドリアの酸化的リン酸化よりも,解糖系でATPを産生する現象(Warburg効果 実験医学Online)
不思議なことに、がん細胞はエネルギーを産生する際に、酸素があっても酸素を使わない「解糖系」だけでATPを作るんですね。解糖系だとATPはたったの2個しかできません。そのため大量のグルコースが必要になります。そのため、がん細胞は大量のグルコースを取り込んでいます。なのでグルコースを大量に取り込んでいる細胞を可視化することにより、がん細胞が可視化されるわけです。
Warburg効果は好気的解糖?嫌気的解糖?
酸素が存在する環境での解糖なので「好気的解糖」といえますが、ネットでいろいろ記事をみていると、酸素を使わない解糖なので「嫌気的解糖」と説明しているように思えるものにも遭遇します。正反対の言葉が同じことを意味するために使われていて、なんだか混乱を招きそうですね。
ナイーブT細胞は、脂肪酸酸化や低レベルの解糖を介して供給されるアセチルCoAなどの代謝産物を利用してミトコンドリア内で酸化的リン酸化をおこなうことでATPを産生し、その生存を維持しています。一方、抗原認識に伴い、T細胞では嫌気的解糖が亢進するとともに(ワールブルグ効果)、ペントースリン酸経路が活性化し、クローン増殖が開始します。それに加え、活性化したT細胞では、グルタミン代謝が亢進することが知られています。抗原認識によってT細胞で誘導される代謝変化は、がん細胞の代謝状態に類似したものですが、可逆的であり、抗原排除後に長期間生体内に残るメモリーT細胞では、再び、ナイーブT細胞と同様の代謝経路が使われます。(愛媛大学大学院医学系研究科免疫学・感染防御学 研究内容)
ワールブルグ(Warburg)効果 その理由
なぜがん細胞が酸素存在下でもTCAサイクルを回さずに解糖系だけを動かしているのか?その理由はがん細胞が増殖しないといけないから、増殖するためにはDNA合成を盛んにする必要があり、DNAの材料であるリボースを大量に必要とするから、そしてリボースは解糖系から分岐する代謝回路(ペントースリン酸回路)で作られるからです。
Specifically, TGF-β1 promotes tumor progression by inducing a switch from an epithelial to a mesenchymal/migratory phenotype in HCC cells, reducing mitochondrial respiration and enhancing glutamine transporter SLC7A5b (Solute Carrier Family 7 Member 5), glutaminase 1, and pentose phosphate cycle [74]. The latter provides precursors for nucleotide synthesis and prevents oxidative stress and redox homeostasis. https://www.mdpi.com/2072-6694/12/10/2819
Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849637/
下のレビューでは、増殖のための生合成経路を動かすために解糖系を使っているという考え方は魅力的ではあるが必ずしも妥当性があるとはいえないということを指摘しています。
However, after careful inspection, it becomes apparent that its benefits for cell growth and survival are not yet resolved.
The Warburg Effect has been proposed to be an adaptation mechanism to support the biosynthetic requirements of uncontrolled proliferation (Figure 2, Key Figure). In this scenario, the increased glucose consumption is used as a carbon source for anabolic processes needed to support cell proliferation [17, 26–32]. This excess carbon is used for the de novo generation of nucleotides, lipids, and proteins and can be diverted into multiple branching pathways that emanate from glycolysis.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783224/
- Acta Pharmaceutica Sinica B Volume 14, Issue 3, March 2024, Pages 953-1008 Acta Pharmaceutica Sinica B REVIEW Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer Author links open overlay panelMinru Liao a †, Dahong Yao b †, Lifeng Wu a †, Chaodan Luo d, Zhiwen Wang a b c, Jin Zhang c, Bo Liu a https://www.sciencedirect.com/science/article/pii/S2211383523004719
- New Clarity on the Warburg Effect SubscribeExit Disclaimer January 13, 2021, by Alba Luengo, Zhaoqi Li, and Matthew Vander Heiden https://www.cancer.gov/research/key-initiatives/ras/news-events/dialogue-blog/2021/vander-heiden-warburg-effect