神経発生において、最初は一様な細胞集団だったものが、ある細胞が神経細胞になり、周りの細胞を神経細胞にならないように(側方抑制)して、結果的に、グリア細胞に分化させるということが起こります。どのようなメカニズムがこの側方抑制という現象を実現させているのでしょうか。
ここで使われている仕組みが、デルタ(リガンド)とノッチ(受容体)です。
The role of the Notch signaling pathway in Drosophila development has been studied since a dominant notched wing phenotype was first reported in 1914, but its role in human development and disease has only been recognized since 1991, when mutations in NOTCH1 were associated with a form of T-cell acute lymphoblastic leukemia (T-ALL) [1]. In 1996, NOTCH3 mutations were found to cause CADASIL, a disorder characterized by stroke and dementia, with onset in the 3rd or 4th decade [2].
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638987/
一様な細胞集団では、当初、すべての細胞がdeltaとnotchを発現しています。しかし、個々の細胞で発現量にばらつきがあった場合、その差が拡大するような仕組みが存在しているのです。
delta→notch→NICD(notch intracellular domain)が核内に移行→NICDがHES遺伝子の発現をオン→転写因子HESがAcaete-Scute遺伝子の発現を抑制→転写因子Acaete-ScuteによるDelta遺伝子の発現がダウン
という一連の反応により、deltaのシグナルをより強く受信した細胞では、deltaを出せなくなります。転写因子Acaete-Scuteは、deltaを発現しているだけでなく、神経細胞に分化するために必要な遺伝子群もオンにするので、結局、deltaのシグナルを出した側の細胞は、自分は神経細胞になり、周りの細胞を神経細胞にさせなくするというわけです。下の図が非常にわかりやすいと思います。
https://scholarlycommons.pacific.edu/open-images/37/
上の説明はショウジョウバエに関するものですが、哺乳類でも同様の仕組みがあるそうです。
Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition Ryoichiro Kageyama, Toshiyuki Ohtsuka, Hiromi Shimojo & Itaru Imayoshi Nature Neuroscience volume 11, pages1247–1251 (2008) 28 October 2008 https://www.nature.com/articles/nn.2208
delta-notchシグナリングは、標的遺伝子の違いによっては、側方抑制以外の分化状態を作り出すことも可能なようです。
Understanding the Principles of Pattern Formation Driven by Notch Signaling by Integrating Experiments and Theoretical Models Front Physiol. 2020; 11: 929. Published online 2020 Jul 31. doi: 10.3389/fphys.2020.00929 PMCID: PMC7411240 PMID: 32848867
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411240/
上の図では、最初、一様な細胞集団を仮定しましたが、実際にはそうでもなくて、不均一性があります。下の説明によれば、神経細胞の分化が起こる場所apical/ventricular surfaceでは、細胞が分裂したときに、2つの細胞の「組成」が一様でなくなっているそうです。
Neural progenitors are polarised along the apico-basal axis of the neuroepithelium and localise apical polarity proteins such as Pard3 to the apical surface. Most neural progenitors divide at the apical surface of the neuroepithelium. A daughter that inherits the apical attachment (outlined by Pard3), inherits the Delta modulator Mindbomb and is likely to become a neuron.
Delta-Notch Signaling: The Long and the Short of a Neuron’s Influence on Progenitor Fates J Dev Biol. 2020 Jun; 8(2): 8. Published online 2020 Mar 26. doi: 10.3390/jdb8020008 PMCID: PMC7345741 PMID: 32225077 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345741/
Delta-Notchシグナリングと脊椎動物の体節形成
Delta-Notchシグナリングは、側方抑制による神経細胞ーグリア細胞分化だけでなく、脊椎動物の体節形成にも関与していることが知られています。
- Delta-Notch signalling in segmentation Arthropod Structure & Development Volume 46, Issue 3 , May 2017, Pages 429-447
以下、consensus.appの回答です。
デルタ-ノッチ(Delta-Notch)シグナル伝達経路は、発生過程における細胞運命の決定に重要な役割を果たします。特に、体節形成(somitogenesis)において、このシグナル伝達経路がどのように関与しているかについて多くの研究が行われています。
- Wntシグナルとノッチ経路の連携:
- WntシグナルはLEF1を介してDelta-like1(Dll1)を調節し、これによりノッチ経路が活性化されることが示されています。LEF1の変異は体節のパターン形成とノッチ経路の構成要素の発現に影響を与えます。
- ノッチ経路のオシレーター機能:
- ノッチ経路は体節形成中にオシレーターとして機能し、遺伝子発現の振動を制御します。特に、DeltaDがこのオシレーター機能に必要であり、her1の発現パターンに影響を与えます。
- 異なるデルタリガンドの役割:
- 異なるデルタリガンド(例えば、deltaCのスプライスバリアント)は、体節形成において異なるシグナル伝達能力を持ちます。deltaC(tv2)は体節形成には効果的ではないが、他の発生過程には影響を与えます。
- ノッチ経路の多様な機能:
- ノッチ経路は、体節形成中にオシレーターとして機能するだけでなく、他の発生過程でも異なる役割を果たします。例えば、hes1の発現を制御することで、細胞運命のスイッチとして機能することができます。
- ノッチ依存の遺伝子の役割:
- ノッチ依存の遺伝子(例えば、her6とher4)は、体節形成中の遺伝子発現の調整に重要な役割を果たします。これらの遺伝子は、体節前中胚葉における遺伝子発現の周期的な調整を維持するために必要です。
参考論文
- Enhanced Delta-Notch Lateral Inhibition Model Incorporating Intracellular Notch Heterogeneity and Tension-Dependent Rate of Delta-Notch Binding that Reproduces Sprouting Angiogenesis Patterns Yen Ling Koon, Songjing Zhang, Muhammad Bakhait Rahmat, Cheng Gee Koh & Keng-Hwee Chiam Scientific Reports volume 8, Article number: 9519 (2018) Published: 22 June 2018 https://www.nature.com/articles/s41598-018-27645-1
- Cis-interactions between Notch and Delta generate mutually exclusive signalling states David Sprinzak, Amit Lakhanpal, Lauren LeBon, Leah A. Santat, Michelle E. Fontes, Graham A. Anderson, Jordi Garcia-Ojalvo & Michael B. Elowitz Nature volume 465, pages86–90 (2010) Published: 25 April 2010 https://www.nature.com/articles/nature08959