プロンプト:動脈になる細胞はNotchシグナルをオンにし、「Ephrin-B2」というタンパク質を細胞の表面に出し、静脈になる細胞は、Notchシグナルをオフにし、「Eph-B4」というタンパク質(Ephrin-B2の受け皿)を表面に出す。Ephrin-B2(動脈)とEph-B4(静脈)は反発するシグナルなので、動脈は動脈同士、静脈は静脈同士でつながり両者が混線しない。
consensus.appによるまとめ:
動脈・静脈分化におけるNotchシグナルとEphrin-B2/EphB4の役割:分子メカニズムの要点
動脈と静脈の分化は、Notchシグナルの活性化とEphrin-B2/EphB4の発現による細胞間の反発的シグナルによって厳密に制御され、両者の混線を防いでいます。
分子メカニズム
- 動脈内皮細胞はNotchシグナルが活性化され、Ephrin-B2を高発現します。一方、静脈内皮細胞はNotchシグナルが抑制され、EphB4を高発現します (Stewen et al., 2024; Masumura et al., 2009; Aitsebaomo et al., 2008; Adams et al., 1999; Fernández-Chacón et al., 2021; O’Hare & Arboleda-Velasquez, 2022)。
- Ephrin-B2(動脈)とEphB4(静脈)は細胞表面で相互作用し、細胞間の反発的シグナルを生じさせ、動脈と静脈の細胞が混ざらないようにします (Stewen et al., 2024; Aitsebaomo et al., 2008; Adams et al., 1999; Hamada et al., 2003; Huang et al., 2007)。
- Notchシグナルは、VEGFなどの上流シグナルによって活性化され、Ephrin-B2の発現を促進します (Masumura et al., 2009; Aitsebaomo et al., 2008; Fang et al., 2017; Kim et al., 2012; Fernández-Chacón et al., 2021)。
- 静脈分化にはCOUP-TFIIやBMPシグナルが関与し、EphB4の発現を誘導します (Aitsebaomo et al., 2008; Neal et al., 2019)。
研究による補足
| 分子/経路 | 動脈での役割 | 静脈での役割 | 参考文献 |
|---|---|---|---|
| Notchシグナル | 活性化→Ephrin-B2発現促進 | 抑制→EphB4発現促進 | (Stewen et al., 2024; Masumura et al., 2009; Aitsebaomo et al., 2008; Fang et al., 2017; Fernández-Chacón et al., 2021; O’Hare & Arboleda-Velasquez, 2022) |
| Ephrin-B2 | 動脈マーカー、細胞反発 | 低発現 | (Stewen et al., 2024; Masumura et al., 2009; Aitsebaomo et al., 2008; Adams et al., 1999; Hamada et al., 2003) |
| EphB4 | 低発現 | 静脈マーカー、細胞反発 | (Stewen et al., 2024; Masumura et al., 2009; Aitsebaomo et al., 2008; Adams et al., 1999; Neal et al., 2019; Hamada et al., 2003) |
| VEGF | Notch活性化を介し動脈化促進 | – | (Masumura et al., 2009; Aitsebaomo et al., 2008; Fang et al., 2017; Kim et al., 2012) |
| COUP-TFII/BMP | – | 静脈化促進、EphB4誘導 | (Aitsebaomo et al., 2008; Neal et al., 2019) |
Figure 1: 動脈・静脈分化に関わる主要分子と経路の比較表
細胞分離とパターン形成
- Ephrin-B2とEphB4の発現バランスが崩れると、動脈・静脈の細胞分離やパターン形成が障害され、血管異常の原因となります (Stewen et al., 2024; Adams et al., 1999; Zhao et al., 2023)。
- 両者の相互作用は、細胞の接触依存的な双方向シグナルであり、動脈同士・静脈同士の連結を促進し、異なる系統の混線を防ぎます (Stewen et al., 2024; Aitsebaomo et al., 2008; Adams et al., 1999; Hamada et al., 2003; Huang et al., 2007)。
結論
動脈・静脈分化は、NotchシグナルとEphrin-B2/EphB4の発現による細胞間反発シグナルによって厳密に制御され、動脈と静脈のネットワークが正確に形成されることが明らかになっています。
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
References
Stewen, J., Kruse, K., Godoi-Filip, A., , Z., Jeong, H., Adams, S., Berkenfeld, F., Stehling, M., Red-Horse, K., Adams, R., & Pitulescu, M. (2024). Eph-ephrin signaling couples endothelial cell sorting and arterial specification. Nature Communications, 15. https://doi.org/10.1038/s41467-024-46300-0
Masumura, T., Yamamoto, K., Shimizu, N., Obi, S., & Ando, J. (2009). Shear Stress Increases Expression of the Arterial Endothelial Marker EphrinB2 in Murine ES Cells via the VEGF-Notch Signaling Pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 2125-2131. https://doi.org/10.1161/atvbaha.109.193185
Aitsebaomo, J., Portbury, A., Schisler, J., & Patterson, C. (2008). Brothers and sisters: molecular insights into arterial-venous heterogeneity.. Circulation research, 103 9, 929-39. https://doi.org/10.1161/circresaha.108.184937
Adams, R., Wilkinson, G., Weiss, C., Diella, F., Gale, N., Deutsch, U., Risau, W., & Klein, R. (1999). Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis.. Genes & development, 13 3, 295-306. https://doi.org/10.1101/gad.13.3.295
Zhao, S., Mekbib, K., Van Der Ent, M., Allington, G., Prendergast, A., Chau, J., Smith, H., Shohfi, J., Ocken, J., Duran, D., Furey, C., Hao, L., Duy, P., Reeves, B., Zhang, J., Nelson-Williams, C., Chen, D., Li, B., Nottoli, T., Bai, S., Rolle, M., Zeng, X., Dong, W., Fu, P., Wang, Y., Mane, S., Piwowarczyk, P., Fehnel, K., See, A., Iskandar, B., Aagaard-Kienitz, B., Moyer, Q., Dennis, E., Kiziltug, E., Kundishora, A., DeSpenza, T., Greenberg, A., Kidanemariam, S., Hale, A., Johnston, J., Jackson, E., Storm, P., Lang, S., Butler, W., Carter, B., Chapman, P., Stapleton, C., Patel, A., Rodesch, G., Smajda, S., Berenstein, A., Barak, T., Erson-Omay, E., Zhao, H., Moreno-De-Luca, A., Proctor, M., Smith, E., Orbach, D., Alper, S., Nicoli, S., Boggon, T., Lifton, R., Gunel, M., King, P., Jin, S., & Kahle, K. (2023). Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations. Nature Communications, 14. https://doi.org/10.1038/s41467-023-43062-z
Neal, A., Nornes, S., Payne, S., Wallace, M., Fritzsche, M., Louphrasitthiphol, P., Wilkinson, R., Chouliaras, K., Liu, K., Plant, K., Sholapurkar, R., Ratnayaka, I., Herzog, W., Bond, G., Chico, T., Bou-Gharios, G., & De Val, S. (2019). Venous identity requires BMP signalling through ALK3. Nature Communications, 10. https://doi.org/10.1038/s41467-019-08315-w
Fang, J., Coon, B., Gillis, N., Chen, Z., Qiu, J., Chittenden, T., Burt, J., Schwartz, M., & Hirschi, K. (2017). Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nature Communications, 8. https://doi.org/10.1038/s41467-017-01742-7
Kim, J., Peacock, M., George, S., & Hughes, C. (2012). BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis, 15, 497-509. https://doi.org/10.1007/s10456-012-9277-x
Fernández-Chacón, M., Garcia-Gonzalez, I., Mühleder, S., & Benedito, R. (2021). Role of Notch in endothelial biology. Angiogenesis, 24, 237 – 250. https://doi.org/10.1007/s10456-021-09793-7
Hamada, K., Oike, Y., Ito, Y., Maekawa, H., Miyata, K., Shimomura, T., & Suda, T. (2003). Distinct Roles of Ephrin-B2 Forward and EphB4 Reverse Signaling in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association, 23, 190-197. https://doi.org/10.1161/01.atv.0000055440.89758.c2
Huang, X., Yamada, Y., Kidoya, H., Naito, H., Nagahama, Y., Kong, L., Katoh, S., Li, W., Ueno, M., & Takakura, N. (2007). EphB4 overexpression in B16 melanoma cells affects arterial-venous patterning in tumor angiogenesis.. Cancer research, 67 20, 9800-8. https://doi.org/10.1158/0008-5472.can-07-0531
O’Hare, M., & Arboleda-Velasquez, J. (2022). Notch Signaling in Vascular Endothelial and Mural Cell Communications.. Cold Spring Harbor perspectives in medicine. https://doi.org/10.1101/cshperspect.a041159