未分類」カテゴリーアーカイブ

胎児期におけるヒトの顔の発生

顔の発生

この動画は素晴らしい。まずはこれを眺めて、発生過程において顔がパズルが合わさるようにして形成されることを実感し、それから教科書を読んだり下の動画解説を見るのがいいと思います。

Face Development in the Womb – Inside the Human Body: Creation – BBC BBC チャンネル登録者数 1450万人

顔の発生に関する講義動画

下の動画は、発生途上のどの構造が顔のどの部分になるかがわかりやすく説明されていました。

Development of the Face and Palate 浸透 チャンネル登録者数 335万人 (1:49〜から鰓弓の話)

上の動画にでてきた「部位」の名称や説明をざっとまとめておきます。

  • primitive pharynx
  • branchial arches (pharyngeal arches)
  • ectomesenchyme: neural crest cells from rhombomeres 1 and migrate to and infiltrate into the mesodermal tissues in the brahcial arches to make ectomesenchyme
  • branchial grooves:外側からみたときの鰓弓と鰓弓の間のくぼんだ部分
  • pharyngeal pouches:内側からみたときの鰓弓と鰓弓の間のくぼんだ部分
  • maxillary process: branchial arch I が2つに分かれたうちの一つ(前方側)。
    • upper lip: 第6週の終わりにはmaxillary processesとmedial nasal processが癒合してupper lipを形成する。
  • mandibular process:branchial arch I が2つに分かれたうちの一つ(後ろ側)。左右に存在するが中心側に伸びて左右がつながって、一続きの構造になる。発生が進むと、この部分がlower Jawになる。すべての下唇この部分から作られる。また、maillary processと癒合することにより、cheeksが形成される。
  • 第4週に顔の形成が始まる
  • frontal prominence:
  • nasal placodes(プラコードというのは一般的に、外胚葉の肥厚の呼称です): frontal prominenceの一部からできる
  • 第5週にnasal placodesの中胚葉組織が増殖して膨らみをつくる。medial nasal processとlateral nasal processと呼ばれる。
  • frontonasal process: 鼻が形成される時期にはfrontal prominenceはfrontonasal processと名前を変える。
    • medial nasal process:馬蹄を下に向けたような構造の中心側半分
      • intermaxillary segment: 左右2つのmedial nasal processsが中心にきて真ん中で、intermaxillary segmentを形成する。その後、intermaxillary segment は以下の4つの形成に寄与する
        • bridge of the nose
        • philtrum of the lip
        • 4 upper incisors
        • primary palate
    • lateral nasal process:外側半分. 発生が進むと、lateral nasal wallになる。
  • nasal pits:
  • naso-optic groove:発生が進むと、外胚葉組織によって覆われる。nasolacriminal ductを形成する
  • bucconasal groove: (ばっこ ねいざる ぐるーぶ)
  • nasal cavity:鼻腔
  • oral cavity:口腔
  • palate: 口の中の上側の壁の部分。口蓋。
  • stomodeum
  • nasal sac
  • oronasal membrane
  • primitive choana(ぷりみてぃぶ こーえいなー):nasal cavity とoral cavityをつなぐ部分。
  • primary palate
  • incisive foramen
  • palatine shelves
  • tongue
  • nasal septum
  • secondary palate: 第12週までにできる

DPES EarlyEmbryonicFacialDevelopment Faculty of Dentistry, University of Toronto チャンネル登録者数 1.33万人 (神経堤細胞の説明1:53〜)

もうひとつ、わかりやすそうな動画を見つけました。

Development of the Human Face – Embryology DentalManiaK チャンネル登録者数 4.69万人

この動画の説明の仕方は自分にとっては非常にわかりやすいものでした。たった3分で顔の発生のまとめがわかります。

  • processはprominenceと呼ばれることもある。

Special Embryology – Development of the face dissectors チャンネル登録者数 1.74万人

Embryology of the Face (Easy to Understand) Dr. Minass チャンネル登録者数 8.19万人

頭と顔を構成する骨:脳頭蓋と顔面頭蓋

頭蓋は、脳が内部にある脳頭蓋と、顔の部分である顔面頭蓋の2つに大別されます。

脳頭蓋(のうとうがい)は、8個あります。

  1. 前頭骨
  2. 頭頂骨(左右)
  3. 側頭骨(左右)
  4. 後頭骨
  5. 蝶形骨
  6. 篩骨

顔面頭蓋は9種15個(左右対になっているものがあるので)からなります。

顔面頭蓋(がんめんとうがい)

顔面頭蓋 viscerocranium (9種15個)

  1. 鼻骨 nasal bone 有対
  2. 鋤骨 vomer 無対
  3. 涙骨 lacrimal bone 有対
  4. 下鼻甲介 inferior nasal concha 有対
  5. 上顎骨 maxilla 有対
  6. 頬骨 zygonatic bone 有対
  7. 口蓋骨 palatine bone 有対
  8. 下顎骨 mandible 無対
  9. 舌骨 hyoid bone 無対

参考

  1. 顔面頭蓋 (がんめんとうがい、英:viscerocranium) VISUAL ANATOMY
  2. 頭蓋骨を構成する骨と縫合 高津整体院

鰓弓(さいきゅう, branchial arch)/咽頭弓(いんとうきゅう, pharyngeal arch)の構造

鰓弓は咽頭弓とも呼ばれる。鰓(エラ)に分化するわけではないので、咽頭弓という呼称のほうが適切とする考え方がある。

  • 脊椎動物の発生において咽頭部に生じる、支柱状に突出した形態物。
  • 外側は外胚葉上皮、内側は内胚葉上皮に覆われており、内部を神経堤細胞と中胚葉の間葉が満たす。
  • 各咽頭弓の間は咽頭裂と呼ばれ、将来の鰓裂になる。陸上生活を行う多くの四肢動物では各弓の間は、咽頭の内外で溝状の構造として残る外胚葉上皮が溝状にくぼんだ構造は特に咽頭溝と呼ばれる。
  • 各咽頭弓の間で、咽頭内胚葉上皮が体の外側へ向かって嚢状に膨出した構造を咽頭嚢と呼ぶ。

https://ja.wikipedia.org/wiki/咽頭弓

鰓弓とそれによってできる器官

第1鰓弓第2鰓弓下あご、口、耳などを作るもとなります。https://jsprs.or.jp/general/disease/umaretsuki/kuchi/saikyu.html

  1. 第1第2鰓弓症候群・小耳症による顔面変形の治療 東京警察病院 形成外科・美容外科

顎骨をふくむ頭蓋顔面骨の多くは神経細胞由来であり、腸骨を含む体幹や四肢の骨の多くは中胚葉由来である。

KAKEN

下顎骨と上顎骨の発生における類似性 明らかに、上顎骨と下顎骨の間でそれらの発生について興味深い比較が行われている(Dixon,·1957年)。それらの意義は、過大評価されている可能性もあるが、顔面隆起の外胚葉性間葉由来であること、骨化に先立ち上皮-間葉の相互作用が必要 https://www.quint-j.co.jp/books/browse/other/2024/2401_gakuganmen/pageindices/index4.html#page=4

Pharyngeal Arches and its Derivatives – MASTER pharyngeal arches in LESS than 7 minutes ONLY! DentalManiaK 39.3K subscribers

  1. https://youtube.com/shorts/HoOIRMz2RSA?si=Z0ZwntN1O9XXvL98 数秒のアニメーション。顔が作られる様子
  2.  Development of face and palate HD Videos チャンネル登録者数 283人 https://www.youtube.com/watch?v=oz1kJexvEFE

顎(あご)の進化

円口類の一種であるヤツメウナギには、普通のサカナである顎口類のような顎はない。そのため無顎類とも呼ばれるが、口が吸盤のような構造をしていて

鰓弓のうち、前方のものが発達して、上下の顎骨になった、というのが脊椎動物の顎の”はじまり物語”とされている

https://gendai.media/articles/-/79383?page=2

(上顎骨は鰓弓由来ではないのでは?)

上顎の発生

Development Of Maxilla – EmbryologyDentalManiaKチャンネル登録者数 4.69万人

下顎の発生

Development of the Mandible – Embryology [ Learn it in the most SIMPLE way] DentalManiaK 39.3K (4:00)

Development of Mandible | Anatomy and Embryology for Medical Students sqadia.com チャンネル登録者数 10.5万人

論文

  1. A new origin for the maxillary jaw (PDF) 2004年

口蓋 palateの発生

Development Of Palate || Embryology || Easy Explaination || Cleft Palate || Defective Development Knowing Anatomy チャンネル登録者数 10万人

舌の構造

舌(ぜつ、した)は、動物の口の中にある器官。脊椎動物の舌は、筋肉でできた突起物である。https://ja.wikipedia.org/wiki/舌

舌は筋肉からできていて、その筋肉は中胚葉由来のようです。

解剖学的記載は「全ての舌筋は後頭体節に由来する中胚葉から発生し、舌下神経に支配される」とされている。http://douken.kenkyuukai.jp/images/sys%5Cinformation%5C20160906174906-88C33B81B56F727295145970BA381F950612515FA9CDD93589F07BB1FEB16D14.pdf

舌の発生

舌体部の起源については,第1鯉弓にある1対の隆起の融合によるとするもの(Dursy1),Kolliker2)), 第1鰓弓と第2鰓弓との境界部に由来するとするもの(Reichert3),Hammer4),His5り)),tuberculumimparに由来するとするもの(His6)),などの他に外側舌隆起とtuberculumimparとの融合によるとするもの(Kallius7),McMurrich8))などがある.教科書的には外側舌隆起とtuberculumimparとの融合によるが,一般にtuberculumimparは一過性の隆まりにすぎず,舌にとって重要な構成要素ではないという考え方になっている(Hamilton9),Arey10))という記載がある.

舌根部については,第2鰓弓だけから生ずるとするもの(Reichert,Hammer,Born11)),第2鰓弓と第3鰓弓とに由来するとするもの(His6)),第2鰓弓とcopulaとに由来する(Arey),あるいは第3鰓弓の中胚葉が上皮下で移動し,第1鰓弓の中胚葉と融合する(Hamilton)という記載がある.

〔原著〕ヒトの舌発生についての研究 日本医科大学第1解剖学教室(主任:中村逸雄教授)(指導:横尾安夫名誉教授)横尾敦夫* 日医大誌第37巻第6号(1970)(383)―1

消化管の上皮細胞は内胚葉由来であるが,口腔内の粘膜や歯は外胚葉由来であるため,舌上皮も外胚葉由来と混同されやすい.しかし,最近の系統追跡実験などから舌上皮に存在する味蕾やその構成細胞である味細胞は同じ内胚葉由来であるとわかってきた. https://katosei.jsbba.or.jp/view_html.php?aid=629

副甲状腺の発生

  • 四足動物はカルシウムを食餌からしか得ることができないので、骨にカルシウムを蓄積し、濃度が低下する度に血液中に適量溶かし出す必要がある。副甲状腺は、血液中のカルシウム濃度を監視し、副甲状腺ホルモンを血液中に分泌して全身の骨からカルシウムを溶かし出し、血液中のカルシウム濃度を一定に保つ司令塔なのである。
  • 脊椎動物の上陸時に、首の中に副甲状腺が現れた。一方消えていったのは、肺呼吸で不要になったエラである。
  • 3番目の咽頭嚢は胸腺(免疫細胞の分化に関わる)と副甲状腺を、4番目は副甲状腺のみを産み出し
  • 解剖学的に魚類には副甲状腺がない
  • 哺乳類で、咽頭曩から副甲状腺が形成される過程は、Gcm-2という遺伝子によって制御されている
  • ゼブラフィッシュ胚におけるGcm-2の機能を抑制したところ、鰓芽が発生せず魚類においてGcm-2はエラの形成に必要
  • Gcm-2という遺伝子は元来エラの発生に必要な遺伝子であり、陸上に上る時にその機能を副甲状腺の発生に転用したと考えてよさそう
  • ゼブラフィッシュ胚で調べてみた。2つの副甲状腺ホルモンカルシウム感受性受容体はどれもエラで作られていることがわかった
  • 発生学的にも、生理学的にも、エラと副甲状腺はよく似た存在であると考えることができ、副甲状腺がエラから進化してきた可能性

新天地を目指して ―陸上への引っ越しと器官のリサイクル 岡部正隆 東京慈恵会医科大学 DNA医学研究所 JT生命誌研究館

  1. Duplicated zebrafish co-orthologs of parathyroid hormone-related peptide (PTHrP, Pthlh) play different roles in craniofacial skeletogenesis Yi-Lin Yan, Poulomi Bhattacharya,1 Xin Jun He, Bhaskar Ponugoti,1 Ben Marquardt,1 Jason Layman,1 Melissa Grunloh,1 John H. Postlethwait, and David A. Rubin1 J Endocrinol. 2012 Sep; 214(3): 421–435. Published online 2012 Jul 3. doi: 10.1530/JOE-12-0110 PMCID: PMC3718479 NIHMSID: NIHMS488120 PMID: 22761277 Parathyroid hormone (PTH) acts as the main hypercalcemic hormone while PTH-related protein (PTHrP, official human symbol PTHLH (PTH-like hormone) and referred to as Pthlh in this manuscript), is essential for embryonic development, differentiation, and tissue patterning (). Unregulated paracrine secretion of Pthlh is associated with a type of tumor that results in elevated blood calcium levels, a condition called humoral hypercalcemia of malignancy (HHM), while regulated secretion of Pthlh during mouse embryogenesis is essential for the developmental patterning of cartilage, bone, teeth, CNS, pancreas, and other tissues ().

単語

上顎(じょうがく):上(うわ)あごのこと。

下顎(かがく):下あごのこと

皮骨(コトバンク):膜骨とも呼ばれる。はじめ軟骨として発生し,それが骨化してできる骨を軟骨性骨または置換骨というのに対して、軟骨をへずに真皮中に直接形成される骨を皮骨または膜骨という。

顔の発生講義動画

  1. Development of the Face and Palate 浸透 チャンネル登録者数 310万人 (8:16)
  2. Development of the Human Face – Embryology DentalManiaK 39.3K (3:16)

due to と owing to との使い分け

ChatGPT-3.5 に聞いてみました。

“Owing to” and “due to” are often used interchangeably in casual language, but there is a subtle difference in their usage:

  • “Owing to” typically implies a more direct or immediate cause, and it is often used to introduce the reason for something.
  • “Due to” is a bit more general and can be used to indicate a cause, but it can also denote an explanation or attribution of something.

For example:

  • “The cancellation of the event was owing to the bad weather.” (The bad weather directly caused the cancellation.) キャンセルの原因は悪天候でした。
  • “The delay was due to unforeseen circumstances.” (Unforeseen circumstances were the cause, but it might not be as direct as in the first example.) 何らかの理由で遅延が生じました。

In some contexts, they can be used interchangeably without much difference in meaning. However, in formal writing or contexts where precision is necessary, it’s best to use them according to their nuances.

Control of REM sleep by ventral medulla GABAergic neurons【お手本となる文章の分析】

Franz Weber, …, Yang Dan* Control of REM sleep by ventral medulla GABAergic neurons. Nature 526:435–438 (2015) https://www.nature.com/articles/nature14979 の論文の要旨が非常にかっちりと組み立てられていて無駄も隙もない文章構成だと思ったので、分析してみます。以下、英文 分析 の順です

Rapid eye movement (REM) sleep 主題を最初の文の文頭において明示 is a distinct brain state characterized by activated electroencephalogram and complete skeletal muscle paralysis, and is associated with vivid dreams1,2,3. 主題の説明 Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation2, 既知の事柄の紹介 and the neural circuits in the pons have since 副詞(それ以来)介 been studied extensively4,5,6,7,8. 研究の潮流の紹介 The medulla also contains neurons that are active during REM sleep9,10,11,12,13, 既知の事柄の紹介 but whether they play a causal role in REM sleep generation remains unclear. 問題提起 Here we show that a GABAergic (γ-aminobutyric-acid-releasing) pathway originating from the ventral medulla powerfully promotes REM sleep in mice. 提起した問題に対する簡潔な答え(実験結果の要約) Optogenetic activation of ventral medulla GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. もう少し詳細な実験結果 Optrode recordings from channelrhodopsin-2-tagged ventral medulla GABAergic neurons showed that they were most active during REM sleep (REMmax), and during wakefulness they were preferentially active during eating and grooming. 同様の結論を導く別の実験結果 Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate ventral medulla neuron populations. 別の実験結果(先行研究とつながる重要な発見) Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, 実験結果の簡潔な要約・結論 which are probably mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal grey. 推測を交えた補足 These results identify a key component of the pontomedullary network controlling REM sleep. 意義、結論(抽象化した表現)The capability to induce REM sleep on command may offer a powerful tool for investigating its functions. 将来展望・研究領域への期待される波及効果

睡眠の謎、睡眠の役割、メカニズム

人間はなぜ眠るのか?は未だに明らかになっていない謎だそうです。ただし眠らないとだめという研究はあるそう。

 

下の動画は睡眠の第一人者が、自身の研究キャリアを交えて睡眠研究の現状を解説していて非常に面白いものです。

【最先端!快眠の科学】Google賞金4.5億!天才睡眠学者が登場【常識覆す研究】 ReHacQ−リハック−【公式】 チャンネル登録者数 93.9万人

 

1983年RechtscaffenらがScience誌に報告した研究では、「断眠装置」をつくってラットにてきようしたところ、3週間すると、食べているのに体重が減り、体温も低下して死んでしまったそう。少なくとも睡眠は生存に必須と言えそうです。

  1. Physiological Correlates of Prolonged Sleep Deprivation in Rats ALLAN RECHTSCHAFFEN, MARCIA A. GILLILAND, BERNARD M. BERGMANN, AND JACQUELINE B. WINTERAuthors Info & Affiliations SCIENCE 8 Jul 1983 Vol 221, Issue 4606 pp. 182-184 DOI: 10.1126/science.6857280

眠るといっても身体的な睡眠である必要はなく、脳が眠りさえすればいいみたいです。面白いのはオットセイの睡眠で、左側の脳と右側の脳とは交代交替に眠ることができるのだそう。

REM睡眠とノンREM睡眠

ヒトのREM睡眠は1953年に初めて報告されました(Science誌)。その後、ネコでもREM睡眠が存在することが1958年に報告されています。

  1. Sleep architecture: REM sleep and Non-REM sleep and sleep stages https://www.researchgate.net/figure/Sleep-architecture-REM-sleep-and-Non-REM-sleep-and-sleep-stages-Based-on-29_fig2_221054769
  2. https://en.wikipedia.org/wiki/Rapid_eye_movement_sleep
  3. Regularly Occurring Periods of Eye Motility, and Concomitant Phenomena, During Sleep EUGENE ASERINSKY AND NATHANIEL KLEITMANAuthors Info & Affiliations SCIENCE 4 Sep 1953 Vol 118, Issue 3062 pp. 273-274 DOI: 10.1126/science.118.3062.273

人間が睡眠中に夢をみるのは、REM睡眠中だと言われています。夢を見ているのに実際には体を動かすことはないのが不思議ですが、体あ動かないことをatoniaというそうです。

 

睡眠(ノンREM睡眠)の役割

睡眠の役割としてこれまでいわれているのは、成長ホルモンは睡眠中に分泌が上昇するということ、ストレスホルモンの分泌は低下するということが知られています。

  1. Growth hormone secretion during sleep Y. Takahashi, … , D. M. Kipnis, W. H. Daughaday Published September 1, 1968 Citation Information: J Clin Invest. 1968;47(9):2079-2090. https://doi.org/10.1172/JCI105893.
  2. Electroencephalogr Clin Neurophysiol . 1997 Sep;103(3):405-8. doi: 10.1016/s0013-4694(97)00013-1. Temporal relationships between pulsatile cortisol secretion and electroencephalographic activity during sleep in man C Gronfier 1, R Luthringer, M Follenius, N Schaltenbrand, J P Macher, A Muzet, G Brandenberger PMID: 9305289.

また、記憶(シナプスの可塑性)が関係しそうだということ脳の老廃物の除去に関連するのではないかという報告もあります。

  1. Sleep drives metabolite clearance from the adult brain Lulu Xie 1, Hongyi Kang, Qiwu Xu, Michael J Chen, Yonghong Liao, Meenakshisundaram Thiyagarajan, John O’Donnell, Daniel J Christensen, Charles Nicholson, Jeffrey J Iliff, Takahiro Takano, Rashid Deane, Maiken Nedergaard Science . 2013 Oct 18;342(6156):373-7. doi: 10.1126/science.1241224.
  2. Sleep promotes branch-specific formation of dendritic spines after learning Guang Yang, Cora Sau Wan Lai, Joseph Cichon, Lei Ma, Wei Li, Wen-Biao Gan Science . 2014 Jun 6;344(6188):1173-8. doi: 10.1126/science.1249098.

REM睡眠の役割に関してはほとんどわかっていないようです。

REM睡眠を司る脳の部位はどこか

ネコの脳を脳幹を残してその上部(大脳皮質など)を切って除いた「除脳ネコ」(Pontine cat)を使った実験により、脳幹さえのこっていればREM睡眠が生じるということがJouvetらによって1962年にしめされました。

  1. Arch Ital Biol . 1962:100:125-206. [Research on the neural structures and responsible mechanisms in different phases of physiological sleep] [Article in French] M JOUVET PMID: 14452612

じゃあ脳幹の中のどの部分がREM睡眠に関係しているのかというと、脳幹の橋(きょう)と呼ばれる部位にある青斑下核α(Peri-LC α)というニューロンがREM睡眠中になると活動するということがわかりました。

  1. Arch Ital Biol . 1989 Jun;127(3):133-64. Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat G Vanni-Mercier 1, K Sakai, J S Lin, M Jouvet  https://pubmed.ncbi.nlm.nih.gov/2774793/ a high amount of paradoxical sleep (PS) was induced by carbachol applications with short latencies, less than 5 minutes, is the mediodorsal pontine tegumentum, namely the nuclei locus coeruleus (LC) alpha and peri-LC alpha, where ChAT-and TH- immunoreactive neurons are intermingled.
  2. Mapping neuronal inputs to REM sleep induction sites with carbachol-fluorescent microspheres J J Quattrochi 1, A N Mamelak, R D Madison, J D Macklis, J A Hobson Science 1989 Sep 1;245(4921):984-6. doi: 10.1126/science.2475910. The cholinergic agonist carbachol was conjugated to latex microspheres that were fluorescently labeled with rhodamine and used as neuroanatomical probes that show little diffusion from their injection site and retrogradely label neurons projecting to the injection site. Microinjection of this pharmacologically active probe into the gigantocellular field of the cat pontine brain stem caused the awake cats to fall into rapid eye movement (REM) sleep indistinguishable from that produced by free carbachol.

ネコと齧歯類とはすこし事情が異なるようで齧歯類においてはsublaterodorsal nucleus (SLD)と呼ばれる領域がREM睡眠に関与しているようです。ラットを用いた実験で、神経毒によってこの部位を破壊してやるとREM睡眠が減少したという報告があります。

  1. A putative flip-flop switch for control of REM sleep Jun Lu 1, David Sherman, Marshall Devor, Clifford B Saper Nature . 2006 Jun 1;441(7093):589-94. doi: 10.1038/nature04767. Epub 2006 May 10.  PMID: 16688184 DOI: 10.1038/nature04767 Figure 3: The interrelationship of the two halves of the REM switch.

REM睡眠に関与する脳部位はほかにもいくつも発見されており、どれが重要なのかが混沌とした印象です。

  1. Chung, S., Weber, F., Zhong, P. et al. Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545, 477–481 (2017). https://doi.org/10.1038/nature22350 Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus.
  2. Weber, F., Chung, S., Beier, K. et al. Control of REM sleep by ventral medulla GABAergic neurons. Nature 526, 435–438 (2015). https://doi.org/10.1038/nature14979  Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation, and the neural circuits in the pons have since been studied extensively. The medulla also contains neurons that are active during REM sleep, but whether they play a causal role in REM sleep generation remains unclear. Here we show that a GABAergic (γ-aminobutyric-acid-releasing) pathway originating from the ventral medulla powerfully promotes REM sleep in mice.

黄体とは

黄体とは

黄体とは、哺乳類の卵巣内で、排卵後に卵胞が変化してできる物質のことであり、その内分泌組織のこと

https://www.homemate-research-zoo.com/useful/glossary/00158/3636701/

  1. https://webpath.med.utah.edu/FEMHTML/FEM045.html
  2. https://en.wikipedia.org/wiki/Corpus_luteum
  3. https://www.britannica.com/science/corpus-luteum
  4. 良い黄体とはどの様な黄体のことを言うのでしょうか? 黄体は妊娠するために必要なプロジェステロン(黄体ホルモン)を分泌します。妊娠を維持できる値のプロジェステロンを分泌できる黄体が良い黄体と言えます。
  5. https://sciencephotogallery.com/featured/human-ovary-with-corpus-luteum-jose-calvoscience-photo-library.html

Granulosa Lutein CellsとTheca Lutein Cells

Histology of the Corpus Luteum 4K UB Medical Histology チャンネル登録者数 3420人

卵胞ホルモン(エストロゲン)と黄体ホルモン(プロゲステロン)

女性ホルモンには、卵巣から分泌される「エストロゲン(卵胞ホルモン)」と「プロゲステロン(黄体ホルモン)」の2つがあります。

https://www.otsuka.co.jp/pms-lab/sp/basic/estrogen_progesterone.html

生理が終わってから排卵までは卵胞ホルモン(エストロゲン)の分泌が多い時期で、「卵胞期」と呼ばれます。また、排卵後から生理までは黄体ホルモン(プロゲステロン)の分泌が多くなり、「黄体期」と呼ばれます。

https://www.seirino-mikata.jp/knowledge/how/

  1. Endocrine disorders and fertility and pregnancy: An update https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.970439/full

月経

妊娠が成立しなかった場合、厚くなった子宮内膜は剥がれ落ち、血液とともに体外に流れ出ます。この現象が「月経」です。

https://caran-coron.jp/column/126/

 

Ovary

Histological Structure of the Ovary 4K UB Medical Histology チャンネル登録者数 3420人

ovary Ústav histologie a embryologie LFP UK チャンネル登録者数 2980人

Ovarian Cysts

  1. https://elara.care/female-reproductive-health/ovarian-cysts/

Cell Signaling

  1. The Role of the Guanosine Nucleotide-Binding Protein in the Corpus Luteum https://www.mdpi.com/2076-2615/11/6/1524#fig_body_display_animals-11-01524-f001

生理の仕組み 卵母細胞が排卵される仕組み

The menstrual cycle 浸透 チャンネル登録者数 310万人 (10:57)

ogenesis part 2 – Folliculogenesis and Oogenesis after puberty MedicoVisual – Visual Medical Lectures チャンネル登録者数 4.27万人

Ovarian Cycle | Menstrual Cycle | Part 1 | Folliculogenesis | Reproductive Physiology Byte Size Med チャンネル登録者数 9.74万人 (13:30)

Female Reproductive Cycle | Ovulation Ninja Nerd チャンネル登録者数 291万人

Female Reproductive Cycle | Ovulation & Menstrual Cycle: Overview Ninja Nerd チャンネル登録者数 291万人

  1. Menstrual Cycle Miss Angler チャンネル登録者数 13.7万人 (28:40)

眼の発生

 

眼の発生の講義動画

  1. 3D Development of the Eye: A Comprehensive Overview – Eye Embryology – Ophthalmology MedicoVisual – Visual Medical Lectures チャンネル登録者数 4.26万人

眼の発生は、予定眼領域 eye fieldが生じるところから始まります。簡単に概略をいうと、

  1. 予定眼領域 eye fieldが形成される
  2. 予定眼領域が左右に分かれる(突然変異体などで、分かれなかった場合は、一つ眼になってしまう!)
  3. 眼胞(がんぽう)が、形成される。このころはまだ前脳の部分の神経管は閉じていません。ですから、最初は、神経溝の一部から隆起して眼胞が形成されることになります。

The cellular and molecular mechanisms of vertebrate lens development November 2014 Development 141(23):4432-4447 DOI: 10.1242/dev.107953 CC BY 3.0 https://www.researchgate.net/publication/268985222_The_cellular_and_molecular_mechanisms_of_vertebrate_lens_development#fullTextFileContent

眼の発生の分子メカニズム

眼のマスター遺伝子による予定眼領域 eye filedの確立

脳の前方ではWnt/β-カテニン シグナル経路は抑制されており(Dkkなどにより)、そのかわりノンカノニカルなWntシグナルがeye filedを確立するのに重要な働きをするようです。下の図のようにWNTがeye filedになるすぐ後ろ側から分泌されて、ノンカノニカル経路が働くことで眼のマスター遺伝子であるRAXやPax6の遺伝子発現が誘導されます。

Figure 1 Specification of the eye field in the anterior neural plate. Wnt antagonists are expressed in the neural plate and permit development of the forebrain including the eye field by suppressing Wnt/β-catenin signaling. Very close to the caudal border of the eye field, Wnt11 and Wn4 are expressed and act through Fzd5 and Fz3 (incl. MAK) to activate non-canonical Wnt pathways in the eye field. This mechanism permits morphogenetic movements of retinal precursors into the eye field and promotes expression of eye-field-specific transcription factors, e.g., Pax6 and Rx. For further explanation, see text.

Wnt signaling in eye organogenesis Sabine Fuhrmann Organogenesis Pages 60-67 | Published online: 11 Jun 2008 Cite this article https://doi.org/10.4161/org.4.2.5850  https://www.tandfonline.com/doi/full/10.4161/org.4.2.5850#d1e615

RAX

眼ののマスター遺伝子といえばPAX6が有名です。PAX6をショウジョウバエで強制発現させると発現させた場所に眼が生じることが示されています。しかしマウスにおいてはPAX6遺伝子の働きが無くても眼が形成されるそうです。RAXという転写因子がその後見つかっており、こちらのほうがPAXよりも早くから発現することが知られています。

Figure 4 Whole-mount in situ hybridization of E7.5 (A), E8.5 (B), E9.5 (C and D), E10.5 (E and F), and E11.5 mouse embryos (G and H).  rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina Takahisa Furukawa *, Christine A Kozak †, Constance L Cepko *,‡ Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3088–3093. doi: 10.1073/pnas.94.7.3088 ”pax6 expression starts later than that of rax, suggesting that rax might be directly or indirectly upstream of pax6 in the series of events that lead to optic vesicle formation.”  https://pmc.ncbi.nlm.nih.gov/articles/PMC20326/

RAX遺伝子破壊マウスでは眼の形成ができません。

Details are in the caption following the image

An essential role for Rax in retina and neuroendocrine system development Yuki Muranishi, Koji Terada, Takahisa Furukawa First published: 24 April 2012 https://doi.org/10.1111/j.1440-169X.2012.01337.x DGD https://onlinelibrary.wiley.com/doi/10.1111/j.1440-169X.2012.01337.x

PAX6

眼の発生のマスター遺伝子の一つであるPAX6を欠損させたマウスでは眼が全くできなくなります。

figure 1 Anophthalmia mouse mutant. a Head of a neonatal (P1) homozygous Pax6Aey11 mutant compared to a wild-type mouse (wt) at the same age. The absence of eyes in the mutant is obvious. The eyelids of neonatal mice are still closed (photography: Jana Löster†, unpublished). Mouse models for microphthalmia, anophthalmia and cataracts 27 March 2019 Volume 138, pages 1007–1018, (2019)https://link.springer.com/article/10.1007/s00439-019-01995-w

カエルの眼の発生に関わるマスター遺伝子の発現パターン

Fig. 2. Comparison of EFTF expression patterns by double whole-mount in situ hybridisation. Otx2 expression at stage 12 (A) and 13 (B). In C-I and K-T, the dark blue stain is the expression pattern of the gene named on the left, while the magenta stain is the expression pattern of the gene named on the right, at the stages shown. For example, in C, Otx2 is dark blue and Rx1 is magenta. (J) Both Emx1 and Rx1 stain dark blue. (J-L) The Rx1 (J), Pax6 (K) and Six3 (L)expression borders are indicated by a broken line. A schematic summary of the overlapping expression patterns of the eye field transcription factors at stage 12.5/13 (U) and 15 (V) is shown. Scale bars: in A, 300 μm for A-L; in M, 300 μm for M-T.

Specification of the vertebrate eye by a network of eye field transcription factors Michael E. Zuber, Gaia Gestri, Andrea S. Viczian, Giuseppina Barsacchi, William A. Harris Author and article information Development (2003) 130 (21): 5155–5167. https://journals.biologists.com/dev/article/130/21/5155/52150/Specification-of-the-vertebrate-eye-by-a-network

予定眼領域 eye filedの左右への分離

正中線シグナルであるshhが正中線で分泌される結果PAX2の発現が誘導されます。PAX2はPAX6を抑制することにより、真ん中部分は予定眼領域ではなくなり、予定眼領域が左右に分かれます。

眼胞によるレンズプラコードの誘導の誘導

眼胞からBMPやFGFなどのシグナル分子が分泌されて外胚葉に働きかけ、レンズを誘導します。

Figure 2. Figure 2. Expression of Bmp4 and BMP type-I receptor genes during early eye development. (A–F) In situ hybridization using an antisense riboprobe for Bmp4 on transverse sections of 10- (A) and 14- (B) somite-stage embryos, and on frontal sections of 18- (C), 22- (D), 27- (E), and ∼40-somite-stage (10.5 dpc) (F) embryos.

BMP4 is essential for lens induction in the mouse embryo Yasuhide Furuta and Brigid L.M. Hogan1 Genes & Dev. 1998. 12: 3764-3775 https://genesdev.cshlp.org/content/12/23/3764.full

Figure 3.  Figure 3. The timing and intensity of FGF signalling controls the two-dimensional patterning of the lens. The PPR is first selected from the head ectoderm by active FGF signalling devoid of suppressive BMP and Wnt (a), before progressing further towards the LP fate in lieu of(~の代わりに◆instead of に近い意味) continuous FGF signalling (b). FGF next induces Frs2–Shp2-mediated Ras signalling modulated by NF1 to promote Pax6 expression and lens vesicle invagination (c), but FGF signalling must be suppressed by Spry to allow lens vesicle closure (d). During the subsequent lens maturation, FGF cooperates with PDGF to stimulate Notch signalling, which promotes lens epithelium proliferation (e). In lens fibre cells, FGF signalling also activates Ras to promote differentiation and recruit Ras and Rac GTPases via Crk/CrkL to promote cell elongation (f).

レンズの前後軸の決定に関わる分泌シグナル:WNTとFGF

 Fig. 2. Diagram indicating how the ocular media and a gradient of FGF stimulation may determine antero-posterior patterns of lens cell behavior. Growth factor regulation of lens development F.J. Lovicu , J.W. McAvoy Developmental Biology Volume 280, Issue 1, 1 April 2005, Pages 1-14 https://www.sciencedirect.com/science/article/pii/S001216060500045X?via%3Dihub

眼胞から眼杯へ

眼胞から眼杯に形態が変わるときに重要な遺伝子として転写因子Lhx2が同定されています。下の論文によれば、Lhx2ノックアウトマウスでは眼胞までは形成されますが眼杯はできないそうです。また外胚葉がレンズに誘導される現象も起きないのだそうです。下の図が示すようにLhx2がBMPを亢進して、BMPがレンズ誘導や眼杯形成を促進するという仮説が提唱されています。

Fig. 8. Model of Lhx2 function during mouse early eye organogenesis. Lhx2, under the control of the EFTF network, links lens specification and optic vesicle patterning through the regulation of BMP signaling (black arrows). Lhx2 also promotes optic vesicle patterning by cell-autonomous mechanisms (red arrows). Why Bmp4 fails to upregulate Tbx5 expression is not resolved (dashed line). The timing of action and influence of Lhx2 on several pathways suggest that it acts to coordinate the multiple patterning events necessary for optic cup formation.

Lhx2 links the intrinsic and extrinsic factors that control optic cup formation Sanghee Yun, Yukio Saijoh, Karla E. Hirokawa, Daniel Kopinke, L. Charles Murtaugh, Edwin S. Monuki, Edward M. Levine Author and article information Development (2009) 136 (23): 3895–3906. https://journals.biologists.com/dev/article/136/23/3895/43745/Lhx2-links-the-intrinsic-and-extrinsic-factors

眼の発生の分子メカニズムのまとめ

下のレビュー論文の図が、眼の発生に関与するシグナル分子や転写因子を網羅的にまとまっていてわかりやすいと思います。

 FIGURE 4 | Early ocular morphogenesis. The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders July 2020 Frontiers in Cellular Neuroscience 14:265 DOI: 10.3389/fncel.2020.00265 License CC BY  (A) Developmental pathways such as Wnt, BMP, and fibroblast growth factor (FGF) drive upregulation of eye-field transcription factors in the anterior neural plate, creating the specified region known as the “eye-field.”

 

症例報告

  1. Cyclopia, a newborn with a single eye, a rare but lethal congenital anomaly: A case report Int J Surg Case Rep. 2021 Nov; 88: 106548. Published online 2021 Nov 4. doi: 10.1016/j.ijscr.2021.106548 PMCID: PMC8581486 PMID: 34741865

咽頭弓(いんとうきゅう)もしくは鰓弓(さいきゅう)の発生 人間の「エラ」は何になるのか?

個体発生は系統発生を繰り返すという言葉は、夢を掻き立てられます。人間の発生において、胎児期には魚のエラのようにみえる「エラ」が存在するというのは驚きです。もちろん人間には呼吸のためのエラは必要ありませんし、そのようなものは発生してきません。では、胚の段階で「えら」に見えた部分は、その後どのような運命を辿ってどんな器官になるのでしょうか。咽頭弓も鰓弓も同じものをさしています。研究者によって好みの呼び方があるようです。人間の咽頭弓pharyngeal arches は魚の鰓(エラ)じゃないしと思う人は咽頭弓と呼ぶのでしょう。あえて鰓弓 bronchial archesと呼ぶ研究者もいるようです。

pharyngeal arches 咽頭弓(いんとうきゅう)

pharyngeal grooves 咽頭溝(いんとうこう)

pharyngeal pouches 咽頭嚢(いんとうのう)

  1. Pharyngeal Grooves and Pouches by Peter Ward, PhD https://app.lecturio.com/#/lecture/s/10348/44540

 

咽頭弓の発生に関しては、外胚葉、中胚葉、内胚葉の説明から始めて内胚葉部分の咽頭嚢の形成まで言及している下の説明動画がベストじゃないかと思います。咽頭弓、咽頭溝、咽頭嚢の構造と三胚葉との関係を把握しておかないと、その先の話が理解できません。

見た目の構造と番号付けの食い違いを理解するのも大事です。最初の2つの弓に見えるのが実は、「1番め」の咽頭弓です。その後ろが2番、その後ろが3番、その後ろが4番、そして5番がなくて、次が6番になります。人の場合5番めの咽頭弓は発達しないのだそうです。他の動物種との比較解剖学のために番号だけはとっておかれるんですね。

それぞれの咽頭嚢に対して動脈も形成され、脳神経も支配します。下の動画を見ておけば、どんなほかの動画や教科書を見ても混乱しなくて済むのではないでしょうか。

魚のエラの場合、血管(酸素、二酸化炭素のガス交換のため)、軟骨(エラに強度を与えるため)、筋肉(エラを動かすため)、神経(筋肉を動かすため)が構成要素になっています。実は人間の「エラ」も同様で、血管、軟骨、筋肉、神経が要素になっています。もちろん発生がすすんでも魚のエラの機能も構造も持たないのですが、そのかわりに、顔や首の構造に発生していきます。構成要素は同じという把握の仕方は、理解を助けますし、進化を考えるうえで興味深いと思います。下の動画の最後のほうではそういったことが語られていてなるほどと思いました。

3D Embryology of Pharyngeal arches, Pharyngeal Pouches, Pharyngeal clefts and Pharyngeal Apparatus MedicoVisual – Visual Medical Lectures チャンネル登録者数 4.69万人

鰓弓の番号について

鰓弓の数え方(名称)ですが、第一鰓弓は2つのふくらみに分かれているので、1番めと2番目に見える前方からかぞえた2つのふくらみが、第一鰓弓になります。その後ろに第二鰓弓、第三鰓弓、第四鰓弓、第五はなくて、第六鰓弓となります。第五鰓弓はできてすぐ退縮するみたいで存在しません。図で膨らみを見て数えても、名前と一致しないということが起きるんですね。

  1. 3D Embryology of Pharyngeal arches, Pharyngeal Pouches, Pharyngeal clefts and Pharyngeal Apparatus MedicoVisual – Visual Medical Lectures チャンネル登録者数 4.26万人 3胚葉からなるディスクがフォールディングによって三重の円筒になる様子がコンピューターグラフィックスにより説明されていました(2分44秒頃)。鰓弓の説明は16分18秒から。19分44秒からは、鰓弓における外胚葉、中胚葉、内胚葉の構造が説明されていて、これがとてもわかりやすいです。教科書の図だけ眺めていても全くわからなかったことが、解説されていました。21分14秒から、内胚葉(内側は空隙)が外側に向かって陥没して咽頭葉(pharyngeal pouch)をつくり、その陥没したさきが、外胚葉の咽頭溝pharyngeal grooveのへこみと向かい合うことが示されます。ここまでコンピュータグラフィックスで説明した後に、23分10秒頃に、教科書に出てくる鰓弓の断面図が紹介されて、対応関係の理解が深まります。ここまでこの動画を見たあとで、Ninja Nerdの動画をみると、鰓弓の断面図の外胚葉、中胚葉、内胚葉という説明に納得がいきます。
  2. Embryology | Development of Pharyngeal Apparatus Ninja Nerd チャンネル登録者数 291万人
  3. 新発生学 Qシリーズ 日本医事新報社 24ページ Q15 鰓弓(咽頭弓)に由来する構造 第5鰓弓は欠如しているか、第6鰓弓と同様に痕跡的である。

上皮間葉転換 Epithelial-mesenchymal transition; EMT

Epithelial-mesenchymal transition(EMT)は、上皮間葉転換もしくは上皮間充織転換と訳されますが、上皮系の細胞が間葉系(間充織)の細胞へ分化することを指します。逆に間葉系の細胞が上皮系の細胞に分化することは、mesenchymal-epithelial transition (MET)と呼ばれます。両者合わせてEMTと呼ぶこともあるようです。

Epithelial-Mesenchymal Transitions in Development and Disease Cell Volume 139, Issue 5p871-890November 25, 2009 https://www.cell.com/fulltext/S0092-8674%2809%2901419-6

 

Figure 1

Epithelial–mesenchymal transition and its transcription factors Biosci Rep. 2021 Dec 23;42(1):BSR20211754. doi: 10.1042/BSR20211754 https://pmc.ncbi.nlm.nih.gov/articles/PMC8703024/

  1. Differential Role of Snail1 and Snail2 Zinc Fingers in E-cadherin Repression and Epithelial to Mesenchymal Transition* J Biol Chem. 2013 Dec 1;289(2):930–941. doi: 10.1074/jbc.M113.528026 https://pmc.ncbi.nlm.nih.gov/articles/PMC3887216/

During embryogenesis, epithelia are considered to be highly plastic and able to switch back and forth between epithelia and mesenchyme, via the processes of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET), respectively. https://www.jci.org/articles/view/39675

医学の世界では、間葉を、生物学の正解では間充織と言う言葉を用いることが多いようですが、全く同一のものを指します。

そもそも発生学において胚の形成過程を理解するための重要な概念として、「上皮性」細胞と「間葉系」細胞(もしくは間充織細胞)の2者の区別があります。

上皮系の細胞と間葉系の細胞

動物胚を構成する細胞は、形態学的な観点から「上皮性」と「間充織性」の2種類に大別される。上皮性の細胞は一般的に円筒状で、細胞同士が密に接着し、基底膜と呼ばれる細胞外組織の上にシート状に並んでいる。これに対し、間充織細胞は不規則な形態で、細胞同士が部分的に接着し、自由に移動できる運動性をもつ。発生初期では、個々の細胞が増殖、遊走、凝集といった挙動を繰り返しながら位置や形態を変化させ、器官が形づくられていく。興味深い点は、この過程において細胞が2種類の形態を相互に変化させていることだ。特に「上皮性」から「間充織性」へ変化する現象は「上皮‐間充織転換(Epithelial to Mesenchymal Transition: EMT)と呼ばれ、原腸形成を始めとする発生時の様々な形態形成過程でみられる。(「上皮‐間充織転換(EMT)」の制御機構に新たな知見 2008年6月23日  独立行政法人 理化学研究所 神戸研究所 発生・再生科学総合研究センター )

  1. Epithelial to mesenchymal transition during gastrulation: An embryological view Yukiko Nakaya, Guojun Sheng First published: 25 November 2008 https://doi.org/10.1111/j.1440-169X.2008.01070.x Development, Growth and Differentiation (DGD)

発生における上皮間葉転換

Embryonic development depends on epithelial cells changing into migratory mesenchymal cells, and then changing back into epithelial cells when they reach their destination. These interlinked cellular dynamics, termed epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET), have long been recognized as fundamental processes that drive development [1]. https://biosignaling.biomedcentral.com/articles/10.1186/s12964-021-00761-8

上皮-間葉移行(Epithelial-mesenchymal transition、EMT)は、上皮細胞が間葉系細胞様に形態変化する現象であり、初期胚発生における原腸陥入神経提細胞の運動や器官形成過程、特に心臓腎臓での重要性がよく知られている。https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19659198/

The transition of epithelial to mesenchymal cells is not irreversible, as several rounds of EMT and MET are necessary for the final differentiation of specialized cell types and the acquisition of the complex three-dimensional structure of internal organs. Accordingly, these sequential rounds are referred to as primary, secondary, and tertiary EMT (Figure 1). (Cell Volume 139, Issue 5, 25 November 2009, Pages 871-890 Review Epithelial-Mesenchymal Transitions in Development and Disease

Cellular plasticity is fundamental to embryonic development. The importance of cellular transitions in development is first apparent during gastrulation when the process of epithelial to mesenchymal transition transforms polarized epithelial cells into migratory mesenchymal cells that constitute the embryonic and extraembryonic mesoderm.  https://cir.nii.ac.jp/crid/1364233269608738688

上皮間葉転換に関わるシグナル分子

上皮間葉転換(epithelial-to-mesenchymal transition:EMT)は,胎児の発生期や創傷の治癒過程で観察される生理学的現象であり,カドヘリンを介して細胞と細胞が接着することによって組織を形成している上皮細胞が,可動性の高い間葉系の細胞に変化する現象を言う.EMT はtransforming growth factor(TGF,トランスフォーミング成長因子)-βファミリーに属する各種因子によって誘導されることが知られている1).炎症,機械的刺激,サイトカインなどが上皮に作用することでもTGF-βの下流シグナルが活性化され,EMT が誘導される.

上皮間葉転換の腫瘍における意義(PDF) 佐 谷 秀 行 慶應義塾大学医学部先端医科学研究所遺伝子制御研究部門 家族性腫瘍 第10 巻 第2 号 2010 年)

上皮—間葉分化転換とTGF-β
消化管肺の気道などの管腔1層の上皮細胞という細胞によって覆われています。80%以上のがんはこの上皮細胞から起こると言われています。上皮細胞はさまざまな刺激で間葉系細胞と呼ばれる細胞に分化し、これを上皮—間葉分化転換(EMT)と呼びます。上皮細胞は丸い形をして細胞同士が固く接着し合っていますが、間葉系細胞は紡錘形の形をしており、細胞同士の接着が弱くなります(図1)。間葉系細胞は上皮細胞に比べて運動する能力が活発であるのが特徴です。EMTは私たちの身体ができる発生の過程で見られますが、上皮細胞ががん細胞に移行していく際に見られる重要な現象でもあります。EMTはさまざまな刺激で起こると考えられていますが、なかでもTGF-βが上皮細胞に作用するとEMTが起こりやすくなります。しかしすべての上皮細胞にTGF-βを加えても一様にEMTが起こる訳ではありません。私たちは膵臓がんの細胞を用いた実験で、膵臓がん細胞にRasというがん遺伝子に異常が起こっていると、TGF-βを加えた場合にEMTが強く見られることを発見しました(がんの浸潤と転移のシグナルネットワークを探る(PDF) 東京大学大学院 医学系研究科 分子病理学分野 宮 園 浩 平)

上皮間葉転換とがん

EMTは発生のときに重要であるだけでなく、がんにおいても重要な意味を持ちます。

EMTには,①発生の過程,②がん化過程,③そして炎症に伴う上皮細胞の間葉系細胞への変換,すなわちColⅠ産生性線維芽細胞・筋線維芽細胞への移行という3種類が存在するとされている.(上皮間充織転換 実験医学ONLINE)

泌尿器形成におけるMET

  1. Thomas J. Carroll, Joo-Seop Park, Shigemi Hayashi, Arindam Majumdar, Andrew P. McMahon, Wnt9b Plays a Central Role in the Regulation of Mesenchymal to Epithelial Transitions Underlying Organogenesis of the Mammalian Urogenital System, Developmental Cell,Volume 9, Issue 2,2005,Pages 283-292,ISSN 1534-5807, https://doi.org/10.1016/j.devcel.2005.05.016.

 

レビュー論文

  1. EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 21, 325–338 (2021). Lambert, A.W., Weinberg, R.A. Linking  https://doi.org/10.1038/s41568-021-00332-6

 

Molecular signaling directing neural plate border formation Int. J. Dev. Biol. 68: 65 – 78 (2024)  https://doi.org/10.1387/ijdb.230231me Vol 68, Issue 2https://ijdb.ehu.eus/article/230231me

膣炎 vaginitisとは

語句

  1. Vaginitis MAYO CLINIC
  2. Prepubertal vulvovaginitis
  3. nonspecific vulvovaginitis 非特異性外陰膣炎
  4. Vulvovaginitis 外陰膣炎(アルク)
  5. Candidal vaginitis カンジダ膣炎(MSDマニュアルプロフェッショナル編)
  6. 外陰膣真菌症
  7. Vulvovaginal Candidiasis (VVC) Centers for Disease Control and Prevention (CDC) 外陰膣カンジダ症

非特異性膣炎

非特異性腟炎とは、トリコモナス、クラミジア、カンジダ、淋菌といった特定の病原性微生物や病原菌によって引き起こされる感染症とは異なり、一般的な細菌によっておこる子宮腟部の炎症のことを言います。原因となる細菌の代表的なものには、大腸菌、ブドウ球菌、連鎖球菌などです。(非特異性腟炎について ともこレディースクリニック)

小児膣炎

小児では低エストロゲン状態のため膣内の自浄作用があまり高くないために最近の感染による炎症すなわち膣炎になることが珍しくないそうです。いわゆる非特異性膣炎(特定の病原菌が原因ではなく、腸内常在菌が原因となっているもの)であることが多いそう。

Nonspecific vulvovaginitis is responsible for a large proportion of vulvovaginitis in prepubertal females. https://www.uptodate.com/contents/vulvovaginitis-in-the-prepubertal-child-clinical-manifestations-diagnosis-and-treatment

In children, vaginitis usually involves infection with gastrointestinal tract flora (nonspecific vulvovaginitis). https://www.msdmanuals.com/en-jp/professional/gynecology-and-obstetrics/vaginitis,-cervicitis,-and-pelvic-inflammatory-disease/overview-of-vaginitis

  1. 小児の膣炎について知りたい 産婦人科小児科2021-05-25 レバウェル看護
  2. 外陰膣炎(非特異性膣炎) 妹尾小児科 小児期の膣炎はカンジダはあまりなく、ほとんどは普段この部分の近くにいる細菌が感染するものです。
  3. こどもによくある皮膚の病気 なだこどもとアレルギーのクリニック おりもの(外陰膣炎)の原因・症状女の子のおむつやパンツに黄色~薄緑色のおりものがついたり、おしっこをするのを痛がります。外陰部から膣に細菌が入り炎症を起こすことが原因です。
  4. 幼児、小児の女子性器に異常を感じた時 河村循環器病クリニック
  5. 小児外陰炎 MedicalNote 原因として多いのは、石けんやトイレットペーパー、洗濯用洗剤などに対してのアレルギーです。
  6. 小児膣炎」についてこんなお悩みに医師がお答えします
  7. Prepubertal vulvovaginitis January 2018Journal of Nature and Science of Medicine 2(1) DOI:10.4103/JNSM.JNSM_33_18 License CC BY-NC-SA The majority of cases are due to nonspecific vulvovaginitis in which vaginal cultures will grow organisms considered to be part of the normal flora. The condition is easily managed with good perineal hygiene. In reluctant cases, oral antibiotics or local estrogen cream may be helpful.

老人性膣炎(萎縮性膣炎)

  1. 膣炎は、どのような症状ですか? A-膣炎といってもいろいろな膣炎があります。イワタ医院
  2. 腟炎(細菌性腟炎、萎縮性腟炎) 女性感染ナビ