Development of the Tongue Osmosis from Elsevier 3.1M subscribers (8:23)
- Development of Tongue and Palate – Embryology [LEARN it the most SIMPLE way] DentalManiaK 39.3K subscribers (5:39) 2:18から舌の発生
Development of the Tongue Osmosis from Elsevier 3.1M subscribers (8:23)
生物学では『間充織」(かんじゅうしき)、医学では「間」(かんよう)と呼び方が異なりますが、同一のものを指しています。このブログでは特に使い分けをせずに、どちらも使うことにします。
The apical ectodermal ridge (AER) maintains the mesenchyme in a proliferating state (preventing it from form cartilage) that enables the linear growth of the limb; maintains the expression of those molecules that generate the anterior-posterior axis; interacts with the proteins specifying the anterior-posterior and dorsal-ventral axis. AER formation requires
bone morphogenetic protein (BMP) signaling and can be prevented in transgenic mice by expressing a dominant negative BMP receptor under the control of an epidermis-specific promoter. The signal for limb bud formation comes from mesodermal cells, which secrete FGF-10, capable of initiating interactions between the ectoderm and mesoderm (Xu et al., 1998, Yonei-Tamura et al.,1999). FGF-10 induces the overlying ectoderm to form the AER.
Moreover, FGF-10 induces the AER to synthesize and secrete FGF-8, which stimulates mitosis in the mesenchymal cells. The FGF-10 knockout mouse forms no limb buds.Int. J. Dev. Biol. 58: 303 – 306 (2014) https://doi.org/10.1387/ijdb.140143dr Vol 58, Issue 5 Epithelial-mesenchymal interactions: a fundamental Developmental Biology mechanism Essay | Published: 30 September 2014 Domenico Ribatti* and Marcello Santoiemma
Limbs emerge from the body flank as a consequence of localized epithelial–mesenchymal interactions that result in rapid proliferation of mesenchymal cells leading to the formation of limb buds. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lateral-plate-mesoderm
この動画は素晴らしい。まずはこれを眺めて、発生過程において顔がパズルが合わさるようにして形成されることを実感し、それから教科書を読んだり下の動画解説を見るのがいいと思います。
Face Development in the Womb – Inside the Human Body: Creation – BBC BBC チャンネル登録者数 1450万人
下の動画は、発生途上のどの構造が顔のどの部分になるかがわかりやすく説明されていました。
Development of the Face and Palate 浸透 チャンネル登録者数 335万人 (1:49〜から鰓弓の話)
上の動画にでてきた「部位」の名称や説明をざっとまとめておきます。
DPES EarlyEmbryonicFacialDevelopment Faculty of Dentistry, University of Toronto チャンネル登録者数 1.33万人 (神経堤細胞の説明1:53〜)
もうひとつ、わかりやすそうな動画を見つけました。
Development of the Human Face – Embryology DentalManiaK チャンネル登録者数 4.69万人
この動画の説明の仕方は自分にとっては非常にわかりやすいものでした。たった3分で顔の発生のまとめがわかります。
Special Embryology – Development of the face dissectors チャンネル登録者数 1.74万人
Embryology of the Face (Easy to Understand) Dr. Minass チャンネル登録者数 8.19万人
頭蓋は、脳が内部にある脳頭蓋と、顔の部分である顔面頭蓋の2つに大別されます。
脳頭蓋(のうとうがい)は、8個あります。
顔面頭蓋は9種15個(左右対になっているものがあるので)からなります。
顔面頭蓋(がんめんとうがい)
顔面頭蓋 viscerocranium (9種15個)
参考
鰓弓は咽頭弓とも呼ばれる。鰓(エラ)に分化するわけではないので、咽頭弓という呼称のほうが適切とする考え方がある。
- 脊椎動物の発生において咽頭部に生じる、支柱状に突出した形態物。
- 外側は外胚葉上皮、内側は内胚葉上皮に覆われており、内部を神経堤細胞と中胚葉の間葉が満たす。
- 各咽頭弓の間は咽頭裂と呼ばれ、将来の鰓裂になる。陸上生活を行う多くの四肢動物では各弓の間は、咽頭の内外で溝状の構造として残る外胚葉上皮が溝状にくぼんだ構造は特に咽頭溝と呼ばれる。
- 各咽頭弓の間で、咽頭内胚葉上皮が体の外側へ向かって嚢状に膨出した構造を咽頭嚢と呼ぶ。
https://ja.wikipedia.org/wiki/咽頭弓
第1鰓弓と第2鰓弓は下あご、口、耳などを作るもとなります。https://jsprs.or.jp/general/disease/umaretsuki/kuchi/saikyu.html
顎骨をふくむ頭蓋顔面骨の多くは神経細胞由来であり、腸骨を含む体幹や四肢の骨の多くは中胚葉由来である。
KAKEN
下顎骨と上顎骨の発生における類似性 明らかに、上顎骨と下顎骨の間でそれらの発生について興味深い比較が行われている(Dixon,·1957年)。それらの意義は、過大評価されている可能性もあるが、顔面隆起の外胚葉性間葉由来であること、骨化に先立ち上皮-間葉の相互作用が必要 https://www.quint-j.co.jp/books/browse/other/2024/2401_gakuganmen/pageindices/index4.html#page=4
Pharyngeal Arches and its Derivatives – MASTER pharyngeal arches in LESS than 7 minutes ONLY! DentalManiaK 39.3K subscribers
円口類の一種であるヤツメウナギには、普通のサカナである顎口類のような顎はない。そのため無顎類とも呼ばれるが、口が吸盤のような構造をしていて
鰓弓のうち、前方のものが発達して、上下の顎骨になった、というのが脊椎動物の顎の”はじまり物語”とされている
https://gendai.media/articles/-/79383?page=2
(上顎骨は鰓弓由来ではないのでは?)
Development Of Maxilla – EmbryologyDentalManiaKチャンネル登録者数 4.69万人
Development of the Mandible – Embryology [ Learn it in the most SIMPLE way] DentalManiaK 39.3K (4:00)
Development of Mandible | Anatomy and Embryology for Medical Students sqadia.com チャンネル登録者数 10.5万人
論文
Development Of Palate || Embryology || Easy Explaination || Cleft Palate || Defective Development Knowing Anatomy チャンネル登録者数 10万人
舌(ぜつ、した)は、動物の口の中にある器官。脊椎動物の舌は、筋肉でできた突起物である。https://ja.wikipedia.org/wiki/舌
舌は筋肉からできていて、その筋肉は中胚葉由来のようです。
解剖学的記載は「全ての舌筋は後頭体節に由来する中胚葉から発生し、舌下神経に支配される」とされている。http://douken.kenkyuukai.jp/images/sys%5Cinformation%5C20160906174906-88C33B81B56F727295145970BA381F950612515FA9CDD93589F07BB1FEB16D14.pdf
舌体部の起源については,第1鯉弓にある1対の隆起の融合によるとするもの(Dursy1),Kolliker2)), 第1鰓弓と第2鰓弓との境界部に由来するとするもの(Reichert3),Hammer4),His5り)),tuberculumimparに由来するとするもの(His6)),などの他に外側舌隆起とtuberculumimparとの融合によるとするもの(Kallius7),McMurrich8))などがある.教科書的には外側舌隆起とtuberculumimparとの融合によるが,一般にtuberculumimparは一過性の隆まりにすぎず,舌にとって重要な構成要素ではないという考え方になっている(Hamilton9),Arey10))という記載がある.
舌根部については,第2鰓弓だけから生ずるとするもの(Reichert,Hammer,Born11)),第2鰓弓と第3鰓弓とに由来するとするもの(His6)),第2鰓弓とcopulaとに由来する(Arey),あるいは第3鰓弓の中胚葉が上皮下で移動し,第1鰓弓の中胚葉と融合する(Hamilton)という記載がある.
〔原著〕ヒトの舌発生についての研究 日本医科大学第1解剖学教室(主任:中村逸雄教授)(指導:横尾安夫名誉教授)横尾敦夫* 日医大誌第37巻第6号(1970)(383)―1
消化管の上皮細胞は内胚葉由来であるが,口腔内の粘膜や歯は外胚葉由来であるため,舌上皮も外胚葉由来と混同されやすい.しかし,最近の系統追跡実験などから舌上皮に存在する味蕾やその構成細胞である味細胞は同じ内胚葉由来であるとわかってきた. https://katosei.jsbba.or.jp/view_html.php?aid=629
- 四足動物はカルシウムを食餌からしか得ることができないので、骨にカルシウムを蓄積し、濃度が低下する度に血液中に適量溶かし出す必要がある。副甲状腺は、血液中のカルシウム濃度を監視し、副甲状腺ホルモンを血液中に分泌して全身の骨からカルシウムを溶かし出し、血液中のカルシウム濃度を一定に保つ司令塔なのである。
- 脊椎動物の上陸時に、首の中に副甲状腺が現れた。一方消えていったのは、肺呼吸で不要になったエラである。
- 3番目の咽頭嚢は胸腺(免疫細胞の分化に関わる)と副甲状腺を、4番目は副甲状腺のみを産み出し
- 解剖学的に魚類には副甲状腺がない
- 哺乳類で、咽頭曩から副甲状腺が形成される過程は、Gcm-2という遺伝子によって制御されている
- ゼブラフィッシュ胚におけるGcm-2の機能を抑制したところ、鰓芽が発生せず、魚類においてGcm-2はエラの形成に必要
- Gcm-2という遺伝子は元来エラの発生に必要な遺伝子であり、陸上に上る時にその機能を副甲状腺の発生に転用したと考えてよさそう
- ゼブラフィッシュ胚で調べてみた。2つの副甲状腺ホルモンとカルシウム感受性受容体はどれもエラで作られていることがわかった
- 発生学的にも、生理学的にも、エラと副甲状腺はよく似た存在であると考えることができ、副甲状腺がエラから進化してきた可能性
新天地を目指して ―陸上への引っ越しと器官のリサイクル 岡部正隆 東京慈恵会医科大学 DNA医学研究所 JT生命誌研究館
上顎(じょうがく):上(うわ)あごのこと。
下顎(かがく):下あごのこと
皮骨(コトバンク):膜骨とも呼ばれる。はじめ軟骨として発生し,それが骨化してできる骨を軟骨性骨または置換骨というのに対して、軟骨をへずに真皮中に直接形成される骨を皮骨または膜骨という。
ChatGPT-3.5 に聞いてみました。
“Owing to” and “due to” are often used interchangeably in casual language, but there is a subtle difference in their usage:
For example:
In some contexts, they can be used interchangeably without much difference in meaning. However, in formal writing or contexts where precision is necessary, it’s best to use them according to their nuances.
Franz Weber, …, Yang Dan* Control of REM sleep by ventral medulla GABAergic neurons. Nature 526:435–438 (2015) https://www.nature.com/articles/nature14979 の論文の要旨が非常にかっちりと組み立てられていて無駄も隙もない文章構成だと思ったので、分析してみます。以下、英文 分析 の順です
Rapid eye movement (REM) sleep 主題を最初の文の文頭において明示 is a distinct brain state characterized by activated electroencephalogram and complete skeletal muscle paralysis, and is associated with vivid dreams1,2,3. 主題の説明 Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation2, 既知の事柄の紹介 and the neural circuits in the pons have since 副詞(それ以来)介 been studied extensively4,5,6,7,8. 研究の潮流の紹介 The medulla also contains neurons that are active during REM sleep9,10,11,12,13, 既知の事柄の紹介 but whether they play a causal role in REM sleep generation remains unclear. 問題提起 Here we show that a GABAergic (γ-aminobutyric-acid-releasing) pathway originating from the ventral medulla powerfully promotes REM sleep in mice. 提起した問題に対する簡潔な答え(実験結果の要約) Optogenetic activation of ventral medulla GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. もう少し詳細な実験結果 Optrode recordings from channelrhodopsin-2-tagged ventral medulla GABAergic neurons showed that they were most active during REM sleep (REMmax), and during wakefulness they were preferentially active during eating and grooming. 同様の結論を導く別の実験結果 Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate ventral medulla neuron populations. 別の実験結果(先行研究とつながる重要な発見) Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, 実験結果の簡潔な要約・結論 which are probably mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal grey. 推測を交えた補足 These results identify a key component of the pontomedullary network controlling REM sleep. 意義、結論(抽象化した表現)The capability to induce REM sleep on command may offer a powerful tool for investigating its functions. 将来展望・研究領域への期待される波及効果
人間はなぜ眠るのか?は未だに明らかになっていない謎だそうです。ただし眠らないとだめという研究はあるそう。
下の動画は睡眠の第一人者が、自身の研究キャリアを交えて睡眠研究の現状を解説していて非常に面白いものです。
【最先端!快眠の科学】Google賞金4.5億!天才睡眠学者が登場【常識覆す研究】 ReHacQ−リハック−【公式】 チャンネル登録者数 93.9万人
1983年RechtscaffenらがScience誌に報告した研究では、「断眠装置」をつくってラットにてきようしたところ、3週間すると、食べているのに体重が減り、体温も低下して死んでしまったそう。少なくとも睡眠は生存に必須と言えそうです。
眠るといっても身体的な睡眠である必要はなく、脳が眠りさえすればいいみたいです。面白いのはオットセイの睡眠で、左側の脳と右側の脳とは交代交替に眠ることができるのだそう。
ヒトのREM睡眠は1953年に初めて報告されました(Science誌)。その後、ネコでもREM睡眠が存在することが1958年に報告されています。
人間が睡眠中に夢をみるのは、REM睡眠中だと言われています。夢を見ているのに実際には体を動かすことはないのが不思議ですが、体あ動かないことをatoniaというそうです。
睡眠の役割としてこれまでいわれているのは、成長ホルモンは睡眠中に分泌が上昇するということ、ストレスホルモンの分泌は低下するということが知られています。
また、記憶(シナプスの可塑性)が関係しそうだということ脳の老廃物の除去に関連するのではないかという報告もあります。
REM睡眠の役割に関してはほとんどわかっていないようです。
ネコの脳を脳幹を残してその上部(大脳皮質など)を切って除いた「除脳ネコ」(Pontine cat)を使った実験により、脳幹さえのこっていればREM睡眠が生じるということがJouvetらによって1962年にしめされました。
じゃあ脳幹の中のどの部分がREM睡眠に関係しているのかというと、脳幹の橋(きょう)と呼ばれる部位にある青斑下核α(Peri-LC α)というニューロンがREM睡眠中になると活動するということがわかりました。
ネコと齧歯類とはすこし事情が異なるようで齧歯類においてはsublaterodorsal nucleus (SLD)と呼ばれる領域がREM睡眠に関与しているようです。ラットを用いた実験で、神経毒によってこの部位を破壊してやるとREM睡眠が減少したという報告があります。
REM睡眠に関与する脳部位はほかにもいくつも発見されており、どれが重要なのかが混沌とした印象です。
黄体とは、哺乳類の卵巣内で、排卵後に卵胞が変化してできる物質のことであり、その内分泌組織のこと
https://www.homemate-research-zoo.com/useful/glossary/00158/3636701/
Histology of the Corpus Luteum 4K UB Medical Histology チャンネル登録者数 3420人
女性ホルモンには、卵巣から分泌される「エストロゲン(卵胞ホルモン)」と「プロゲステロン(黄体ホルモン)」の2つがあります。
https://www.otsuka.co.jp/pms-lab/sp/basic/estrogen_progesterone.html
生理が終わってから排卵までは卵胞ホルモン(エストロゲン)の分泌が多い時期で、「卵胞期」と呼ばれます。また、排卵後から生理までは黄体ホルモン(プロゲステロン)の分泌が多くなり、「黄体期」と呼ばれます。
https://www.seirino-mikata.jp/knowledge/how/
妊娠が成立しなかった場合、厚くなった子宮内膜は剥がれ落ち、血液とともに体外に流れ出ます。この現象が「月経」です。
https://caran-coron.jp/column/126/
Histological Structure of the Ovary 4K UB Medical Histology チャンネル登録者数 3420人
ovary Ústav histologie a embryologie LFP UK チャンネル登録者数 2980人
The menstrual cycle 浸透 チャンネル登録者数 310万人 (10:57)
ogenesis part 2 – Folliculogenesis and Oogenesis after puberty MedicoVisual – Visual Medical Lectures チャンネル登録者数 4.27万人
Ovarian Cycle | Menstrual Cycle | Part 1 | Folliculogenesis | Reproductive Physiology Byte Size Med チャンネル登録者数 9.74万人 (13:30)
Female Reproductive Cycle | Ovulation Ninja Nerd チャンネル登録者数 291万人
Female Reproductive Cycle | Ovulation & Menstrual Cycle: Overview Ninja Nerd チャンネル登録者数 291万人
眼の発生は、予定眼領域 eye fieldが生じるところから始まります。簡単に概略をいうと、
The cellular and molecular mechanisms of vertebrate lens development November 2014 Development 141(23):4432-4447 DOI: 10.1242/dev.107953 CC BY 3.0 https://www.researchgate.net/publication/268985222_The_cellular_and_molecular_mechanisms_of_vertebrate_lens_development#fullTextFileContent
脳の前方ではWnt/β-カテニン シグナル経路は抑制されており(Dkkなどにより)、そのかわりノンカノニカルなWntシグナルがeye filedを確立するのに重要な働きをするようです。下の図のようにWNTがeye filedになるすぐ後ろ側から分泌されて、ノンカノニカル経路が働くことで眼のマスター遺伝子であるRAXやPax6の遺伝子発現が誘導されます。
Wnt signaling in eye organogenesis Sabine Fuhrmann Organogenesis Pages 60-67 | Published online: 11 Jun 2008 Cite this article https://doi.org/10.4161/org.4.2.5850 https://www.tandfonline.com/doi/full/10.4161/org.4.2.5850#d1e615
眼ののマスター遺伝子といえばPAX6が有名です。PAX6をショウジョウバエで強制発現させると発現させた場所に眼が生じることが示されています。しかしマウスにおいてはPAX6遺伝子の働きが無くても眼が形成されるそうです。RAXという転写因子がその後見つかっており、こちらのほうがPAXよりも早くから発現することが知られています。
Whole-mount in situ hybridization of E7.5 (A), E8.5 (B), E9.5 (C and D), E10.5 (E and F), and E11.5 mouse embryos (G and H). rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina Takahisa Furukawa *, Christine A Kozak †, Constance L Cepko *,‡ Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3088–3093. doi: 10.1073/pnas.94.7.3088 ”pax6 expression starts later than that of rax, suggesting that rax might be directly or indirectly upstream of pax6 in the series of events that lead to optic vesicle formation.” https://pmc.ncbi.nlm.nih.gov/articles/PMC20326/
RAX遺伝子破壊マウスでは眼の形成ができません。
An essential role for Rax in retina and neuroendocrine system development Yuki Muranishi, Koji Terada, Takahisa Furukawa First published: 24 April 2012 https://doi.org/10.1111/j.1440-169X.2012.01337.x DGD https://onlinelibrary.wiley.com/doi/10.1111/j.1440-169X.2012.01337.x
眼の発生のマスター遺伝子の一つであるPAX6を欠損させたマウスでは眼が全くできなくなります。
Anophthalmia mouse mutant. a Head of a neonatal (P1) homozygous Pax6Aey11 mutant compared to a wild-type mouse (wt) at the same age. The absence of eyes in the mutant is obvious. The eyelids of neonatal mice are still closed (photography: Jana Löster†, unpublished). Mouse models for microphthalmia, anophthalmia and cataracts 27 March 2019 Volume 138, pages 1007–1018, (2019)https://link.springer.com/article/10.1007/s00439-019-01995-w
カエルの眼の発生に関わるマスター遺伝子の発現パターン
Specification of the vertebrate eye by a network of eye field transcription factors Michael E. Zuber, Gaia Gestri, Andrea S. Viczian, Giuseppina Barsacchi, William A. Harris Author and article information Development (2003) 130 (21): 5155–5167. https://journals.biologists.com/dev/article/130/21/5155/52150/Specification-of-the-vertebrate-eye-by-a-network
正中線シグナルであるshhが正中線で分泌される結果PAX2の発現が誘導されます。PAX2はPAX6を抑制することにより、真ん中部分は予定眼領域ではなくなり、予定眼領域が左右に分かれます。
眼胞からBMPやFGFなどのシグナル分子が分泌されて外胚葉に働きかけ、レンズを誘導します。
Figure 2. Expression of Bmp4 and BMP type-I receptor genes during early eye development. (A–F) In situ hybridization using an antisense riboprobe for Bmp4 on transverse sections of 10- (A) and 14- (B) somite-stage embryos, and on frontal sections of 18- (C), 22- (D), 27- (E), and ∼40-somite-stage (10.5 dpc) (F) embryos.
BMP4 is essential for lens induction in the mouse embryo Yasuhide Furuta and Brigid L.M. Hogan1 Genes & Dev. 1998. 12: 3764-3775 https://genesdev.cshlp.org/content/12/23/3764.full
Figure 3. The timing and intensity of FGF signalling controls the two-dimensional patterning of the lens. The PPR is first selected from the head ectoderm by active FGF signalling devoid of suppressive BMP and Wnt (a), before progressing further towards the LP fate in lieu of(~の代わりに◆instead of に近い意味) continuous FGF signalling (b). FGF next induces Frs2–Shp2-mediated Ras signalling modulated by NF1 to promote Pax6 expression and lens vesicle invagination (c), but FGF signalling must be suppressed by Spry to allow lens vesicle closure (d). During the subsequent lens maturation, FGF cooperates with PDGF to stimulate Notch signalling, which promotes lens epithelium proliferation (e). In lens fibre cells, FGF signalling also activates Ras to promote differentiation and recruit Ras and Rac GTPases via Crk/CrkL to promote cell elongation (f).
Fig. 2. Diagram indicating how the ocular media and a gradient of FGF stimulation may determine antero-posterior patterns of lens cell behavior. Growth factor regulation of lens development F.J. Lovicu , J.W. McAvoy Developmental Biology Volume 280, Issue 1, 1 April 2005, Pages 1-14 https://www.sciencedirect.com/science/article/pii/S001216060500045X?via%3Dihub
眼胞から眼杯に形態が変わるときに重要な遺伝子として転写因子Lhx2が同定されています。下の論文によれば、Lhx2ノックアウトマウスでは眼胞までは形成されますが眼杯はできないそうです。また外胚葉がレンズに誘導される現象も起きないのだそうです。下の図が示すようにLhx2がBMPを亢進して、BMPがレンズ誘導や眼杯形成を促進するという仮説が提唱されています。
Lhx2 links the intrinsic and extrinsic factors that control optic cup formation Sanghee Yun, Yukio Saijoh, Karla E. Hirokawa, Daniel Kopinke, L. Charles Murtaugh, Edwin S. Monuki, Edward M. Levine Author and article information Development (2009) 136 (23): 3895–3906. https://journals.biologists.com/dev/article/136/23/3895/43745/Lhx2-links-the-intrinsic-and-extrinsic-factors
下のレビュー論文の図が、眼の発生に関与するシグナル分子や転写因子を網羅的にまとまっていてわかりやすいと思います。
FIGURE 4 | Early ocular morphogenesis. The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders July 2020 Frontiers in Cellular Neuroscience 14:265 DOI: 10.3389/fncel.2020.00265 License CC BY (A) Developmental pathways such as Wnt, BMP, and fibroblast growth factor (FGF) drive upregulation of eye-field transcription factors in the anterior neural plate, creating the specified region known as the “eye-field.”
個体発生は系統発生を繰り返すという言葉は、夢を掻き立てられます。人間の発生において、胎児期には魚のエラのようにみえる「エラ」が存在するというのは驚きです。もちろん人間には呼吸のためのエラは必要ありませんし、そのようなものは発生してきません。では、胚の段階で「えら」に見えた部分は、その後どのような運命を辿ってどんな器官になるのでしょうか。咽頭弓も鰓弓も同じものをさしています。研究者によって好みの呼び方があるようです。人間の咽頭弓pharyngeal arches は魚の鰓(エラ)じゃないしと思う人は咽頭弓と呼ぶのでしょう。あえて鰓弓 bronchial archesと呼ぶ研究者もいるようです。
pharyngeal arches 咽頭弓(いんとうきゅう)
pharyngeal grooves 咽頭溝(いんとうこう)
pharyngeal pouches 咽頭嚢(いんとうのう)
咽頭弓の発生に関しては、外胚葉、中胚葉、内胚葉の説明から始めて内胚葉部分の咽頭嚢の形成まで言及している下の説明動画がベストじゃないかと思います。咽頭弓、咽頭溝、咽頭嚢の構造と三胚葉との関係を把握しておかないと、その先の話が理解できません。
見た目の構造と番号付けの食い違いを理解するのも大事です。最初の2つの弓に見えるのが実は、「1番め」の咽頭弓です。その後ろが2番、その後ろが3番、その後ろが4番、そして5番がなくて、次が6番になります。人の場合5番めの咽頭弓は発達しないのだそうです。他の動物種との比較解剖学のために番号だけはとっておかれるんですね。
それぞれの咽頭嚢に対して動脈も形成され、脳神経も支配します。下の動画を見ておけば、どんなほかの動画や教科書を見ても混乱しなくて済むのではないでしょうか。
魚のエラの場合、血管(酸素、二酸化炭素のガス交換のため)、軟骨(エラに強度を与えるため)、筋肉(エラを動かすため)、神経(筋肉を動かすため)が構成要素になっています。実は人間の「エラ」も同様で、血管、軟骨、筋肉、神経が要素になっています。もちろん発生がすすんでも魚のエラの機能も構造も持たないのですが、そのかわりに、顔や首の構造に発生していきます。構成要素は同じという把握の仕方は、理解を助けますし、進化を考えるうえで興味深いと思います。下の動画の最後のほうではそういったことが語られていてなるほどと思いました。
3D Embryology of Pharyngeal arches, Pharyngeal Pouches, Pharyngeal clefts and Pharyngeal Apparatus MedicoVisual – Visual Medical Lectures チャンネル登録者数 4.69万人
鰓弓の数え方(名称)ですが、第一鰓弓は2つのふくらみに分かれているので、1番めと2番目に見える前方からかぞえた2つのふくらみが、第一鰓弓になります。その後ろに第二鰓弓、第三鰓弓、第四鰓弓、第五はなくて、第六鰓弓となります。第五鰓弓はできてすぐ退縮するみたいで存在しません。図で膨らみを見て数えても、名前と一致しないということが起きるんですね。