投稿者「PhD」のアーカイブ

アプタマーセンサーによるコルチゾールのリアルタイム検出

アプタマーがなぜコルチゾールのセンサーになるのかについて

aptamerを用いてコルチゾールをリアルタイムで測定するための原理は、通常、アプタマーとターゲット分子(この場合はコルチゾール)との特異的な結合を利用します。アプタマーは、特定のターゲット分子に対して高い親和性と選択性を持つ短い一本鎖DNAやRNAのオリゴヌクレオチドです。この特性を利用して、以下のような手法でリアルタイム測定が行われます。

  1. アプタマーの結合と構造変化:
    • アプタマーは、コルチゾールと結合することでその構造が変化します。この構造変化を検出するために、蛍光標識や電気化学的な検出システムを用いることがあります。
    • 例えば、蛍光標識を用いる場合、アプタマーに蛍光物質と消光剤が結合しており、アプタマーがコルチゾールと結合することで蛍光が変化する仕組みです。これにより、蛍光の変化量をリアルタイムでモニタリングし、コルチゾール濃度を測定することが可能です。
  2. 電気化学的検出:
    • アプタマーが電極上に固定され、コルチゾールと結合することで電気化学的な信号が変化することを利用する手法もあります。コルチゾールの結合によるアプタマーの構造変化が、電気的インピーダンスや電流応答に変化を与えるため、これをリアルタイムで測定してコルチゾール濃度を評価します。
  3. 比率型蛍光アプタマーセンサー:
    • コルチゾールに応じて蛍光強度が変わるように設計された二重ラベルアプタマーを使うことで、環境条件や光路の影響を受けにくい安定したリアルタイム測定が可能になります。この方法では、蛍光の比率変化を測定することで、正確なコルチゾール濃度を得ることができます。

これらの方法のいずれも、アプタマーの高い特異性を利用してコルチゾールと選択的に結合させ、その結合の変化をリアルタイムで検出することで測定を行います。これにより、ストレスホルモンであるコルチゾールの変動をリアルタイムに追跡することが可能になります。

(ChatGPT 4o)

アプタマーがそもそもなぜコルチゾールに結合できるのかについて

核酸アプタマーがコルチゾールのような小さな分子に結合できる理由は、主に以下のような核酸アプタマーの特性に基づいています。

1. 高い構造多様性と適応性:

  • 核酸(DNAやRNA)は、塩基配列の組み合わせによって多様な三次元構造を形成することができます。これにより、アプタマーは特定のターゲット分子に適した形状や結合ポケットを形成できます。
  • アプタマーは、一本鎖のDNAやRNAであるため、ランダムコイル状の構造から、ターゲット分子に結合する際に立体的に適した形に変化できます。これにより、コルチゾールのような小さな分子の形状や化学特性にぴったり合うように折りたたまれることが可能です。

2. 非共有結合的相互作用(特に水素結合や疎水性相互作用):

  • コルチゾールはステロイドホルモンで、疎水性の領域と極性を持つ部分(例えば、酸素や水酸基)があります。アプタマーの特定の塩基配列がこれに対応するような立体構造を形成することで、コルチゾールの疎水性部分とアプタマーの疎水性ポケットとの間で疎水性相互作用が発生します。
  • また、コルチゾールの極性基(水酸基など)とアプタマーの塩基間で水素結合を形成することができ、これが結合の特異性と強さをもたらします。核酸の塩基(アデニン、シトシン、グアニン、チミンまたはウラシル)は、それぞれ特定の水素結合を形成する能力を持っているため、ターゲットに対して高い親和性を発揮します。

3. SELEX法による選択プロセス:

  • アプタマーが特定の分子(コルチゾールなど)に強く結合する能力は、一般にSELEX(Systematic Evolution of Ligands by EXponential enrichment)という技術によって得られます。この技術では、ランダムな塩基配列からなる巨大なライブラリー(数十億種類のアプタマー)を使って、コルチゾールに強く結合するアプタマーを選び出します。
  • SELEXプロセスでは、コルチゾールに対して最も強く、そして選択的に結合するアプタマーが繰り返し選択され、最終的には高い親和性と特異性を持つアプタマーが得られます。このようにして、核酸がコルチゾールのような分子に結合するための「形」や「結合部位」を持つようになります。

4. 結合の可逆性とリアルタイム測定:

  • アプタマーとコルチゾールとの結合は非共有結合的な相互作用に基づくため、可逆的であり、リアルタイムでの濃度変化の測定が可能です。アプタマーは、コルチゾールが増減するたびに結合・解離を繰り返し、これを検出装置でモニタリングすることで、リアルタイムでの測定が実現します。

核酸が持つこのような柔軟性と選択的な相互作用の特性により、アプタマーはコルチゾールを含む様々な小分子をターゲットにできるのです。

(ChatGPT 4o)

アプタマーの長さについて

コルチゾールに結合するアプタマーの具体的な例として、研究で報告されているものをいくつか挙げることができます。アプタマーの塩基配列や長さは、研究者によって最適化されたものが使われており、SELEX法によって選別されています。一般的に、コルチゾール結合アプタマーは20〜80塩基程度の長さで設計されていますが、より高い特異性や親和性を得るために、その長さや配列が調整されます。

1. 例:研究での報告例

  • コルチゾールに特異的に結合するアプタマーの一例として、以下のような配列が報告されています(具体的な研究例を引用する形ではなく、一般的な範囲を示します):
    swift
    5'- TCG TCA GAC GAG CAT CGG ATA GTT TGA CGA CAG TCC ATC CGC TGG ATC GAC C -3'

    このような配列は、ターゲットであるコルチゾールとの結合部位を形成するために特定の二次構造(ステムループ構造やヘアピン構造など)を取るように設計されています。

2. 一般的な長さ

  • アプタマーの長さは、通常20〜80塩基の範囲にあり、30〜50塩基が標準的な長さです。この範囲が一般的である理由は、短すぎると特異的な結合サイトを十分に形成できない一方、長すぎると非特異的な結合や構造が増えてしまうためです。したがって、コルチゾールに対して適切に結合するための二次構造を安定して形成できる長さが選ばれます。

3. 配列の役割

  • アプタマーの配列は、コルチゾールの分子構造に合わせて、水素結合や疎水性相互作用を適切に行えるように設計されています。例えば、塩基配列中の特定のG(グアニン)やC(シトシン)の位置は、結合の強さを高めるための水素結合の形成に関与することが多いです。また、アプタマー全体の立体構造が、コルチゾールがフィットするポケットのような形状をとるように、選択された配列が配置されています。

具体的な研究文献や特許に基づく配列を示す場合、より詳細な情報を得るためには、各研究論文や特許文献を参照する必要があります。

(ChatGPT 4o)

論文

アプタマーその他の手法を用いたコルチゾールの定量

  1. Advancements in Cortisol Detection: From Conventional Methods to Next-Generation Technologies for Enhanced Hormone Monitoring ACS Sens . 2024 Apr 26;9(4):1666-1681. doi: 10.1021/acssensors.3c01912. Epub 2024 Mar 29. https://pubs.acs.org/doi/10.1021/acssensors.3c01912 網羅的でなかなかよい
  2. Recent advances in aptamer-based platforms for cortisol hormone monitoring Talanta . 2024 Jan 1;266(Pt 1):125010. doi: 10.1016/j.talanta.2023.125010. Epub 2023 Jul 31.
  3. Advances in electrochemical biosensor design for the detection of the stress biomarker cortisol Anal Bioanal Chem . 2024 Jan;416(1):87-106. doi: 10.1007/s00216-023-05047-1. Epub 2023 Nov 22. https://link.springer.com/article/10.1007/s00216-023-05047-1 このレビュー論文もわかりやすそう。
  4. Wearable and Implantable Cortisol-Sensing Electronics for Stress Monitoring Adv Mater . 2024 Jan;36(1):e2211595. doi: 10.1002/adma.202211595. Epub 2023 Nov 20.
  5. A Gold Nanoparticle-Based Cortisol Aptasensor for Non-Invasive Detection of Fish Stress Biomolecules 2024, 14(7), 818; https://doi.org/10.3390/biom14070818 https://www.mdpi.com/2218-273X/14/7/818
  6. Electrochemical Aptasensing for Lifestyle and Chronic Disease Management Curr Med Chem . 2023;30(8):895-909. doi: 10.2174/0929867329666220520111715.
  7. A wearable sweat electrochemical aptasensor based on the Ni–Co MOF nanosheet-decorated CNTs/PU film for monitoring of stress biomarker Talanta Volume 260, 1 August 2023, 124620 Talanta https://www.sciencedirect.com/science/article/abs/pii/S0039914023003715
  8. DNA super-lattice-based aptasensor for highly sensitive and selective detection of cortisol Author links open overlay panel Lory Cantelli a , Waldemir J. Paschoalino a , Sergio Kogikosky Jr. a b , Tatiana M. Pessanha a , Lauro T. Kubota a Biosensors and Bioelectronics: X Volume 12, December 2022, 100228 https://www.sciencedirect.com/science/article/pii/S2590137022001212 本文へは所属機関経由でアクセス可能
  9. Molecularly Imprinted Polymer-Based Sensor for Electrochemical Detection of Cortisol Biosensors (Basel) . 2022 Nov 29;12(12):1090. doi: 10.3390/bios12121090.  https://pubmed.ncbi.nlm.nih.gov/36551057/
  10. Wearable Cortisol Aptasensor for Simple and Rapid Real-Time Monitoring Jai Eun An 1, Kyung Ho Kim 1, Seon Joo Park 1, Sung Eun Seo 1, Jinyeong Kim 1, Siyoung Ha 1, Joonwon Bae 2, Oh Seok Kwon 1 3 Affiliations Expand PMID: 34995062 DOI: 10.1021/acssensors.1c01734 ACS Sens . 2022 Jan 28;7(1):99-108. doi: 10.1021/acssensors.1c01734. Epub 2022 Jan 7.
  11. Molecularly imprinted electrochemical aptasensor based on functionalized graphene and nitrogen-doped carbon quantum dots for trace cortisol assay Analyst, 2022,147, 744-752 https://pubs.rsc.org/en/content/articlelanding/2022/an/d1an01838h
  12. DNA super-lattice-based aptasensor for highly sensitive and selective detection of cortisol Biosensors and Bioelectronics: X Volume 12, December 2022, 100228
  13. Flexible electrochemical aptasensor for cortisol detection in human sweat Anal. Methods, 2021,13, 4169-4173
  14. Cortisol Detection in Undiluted Human Serum Using a Sensitive Electrochemical Structure-Switching Aptamer over an Antifouling Nanocomposite Layer 2021 https://pubs.rsc.org/en/content/articlelanding/2021/ay/d1ay01233a https://www.researchgate.net/publication/354935726_Cortisol_Detection_in_Undiluted_Human_Serum_Using_a_Sensitive_Electrochemical_Structure-Switching_Aptamer_over_an_Antifouling_Nanocomposite_Layer#fullTextFileContent
  15. Autonomous, Real-Time Monitoring Electrochemical Aptasensor for Circadian Tracking of Cortisol Hormone in Sub-microliter Volumes of Passively Eluted Human Sweat December 31, 2020  https://pubs.acs.org/doi/10.1021/acssensors.0c01754
  16. Stress Biomarkers in Biological Fluids and Their Point-of-Use Detection ACS Sens . 2018 Oct 26;3(10):2025-2044. doi: 10.1021/acssensors.8b00726. Epub 2018 Oct 16.  https://pubs.acs.org/doi/10.1021/acssensors.8b00726 
  17. Current and Potential Developments of Cortisol Aptasensing towards Point-of-Care Diagnostics (POTC) Sensors (Basel) . 2017 May 22;17(5):1180. doi: 10.3390/s17051180.  https://www.mdpi.com/1424-8220/17/5/1180

四肢の発生、形成機構、手指の発生・形成

  1. 四肢(上肢と下肢)の発生・形成、頭部、顔の発生・形成

四肢の発生講義動画

下の動画は説明がうまくて非常にわかりやすい解説だと思いました。四肢の発生は複雑ですが、形態形成の概念、シグナル分子、遺伝子変異による形態の変化など、テンポ良く解説していってくれます。

Tetrapod limb development | Molecules and signaling pathways regulating Limb development| Embryology Animated biology With arpan チャンネル登録者数 29.3万人 (17:28)

The Embryology Behind Congenital Hand Differences Little Arms: a resource for parents and physicians チャンネル登録者数 2390人

  1. macrodactyly 名 《病理》巨指症

Congenital deformities of the Upper Limb Orthopaedic Principles チャンネル登録者数 4.82万人

Congenital hand I: Embryology, classification, and principles

AER

www.frontiersin.org

Activation of the WNT-BMP-FGF Regulatory Network Induces the Onset of Cell Death in Anterior Mesodermal Cells to Establish the ANZ Front. Cell Dev. Biol., 08 November 2021 Sec. Cell Death and Survival Volume 9 – 2021 | https://doi.org/10.3389/fcell.2021.703836

 

 

Front. Genet., 07 January 2019 Sec. Stem Cell Research Volume 9 – 2018 | https://doi.org/10.3389/fgene.2018.00705 This article is part of the Research Topic FGF10 in Development, Homeostasis, Disease and Repair After Injury View all 19 articles Fibroblast Growth Factor 10 and Vertebrate Limb Development https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2018.00705/fullwww.frontiersin.org

 

2017年 https://anatomypubs.onlinelibrary.wiley.com/doi/pdf/10.1002/dvdy.24480

ニワトリの四肢形成

Developmental Biology Volume 273, Issue 2, 15 September 2004, Pages 361-372 Developmental Biology The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth https://www.sciencedirect.com/science/article/pii/S0012160604004282 

 

マウスの四肢形成

Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function Save Related Papers Chat with paper Marie Kmita, Basile Tarchini, Jozsef Zàkàny, Malcolm Logan, Clifford J. Tabin & Denis Duboule Nature volume 435, pages1113–1116 (2005) Published: 23 June 2005 https://www.nature.com/articles/nature03648 figure 2

15 November 2002 growth arrest specific gene 1 acts as a region-specific mediator of the Fgf10/Fgf8 regulatory loop in the limb Ying Liu, Chunqiao Liu, Yoshihiko Yamada, Chen-Ming Fan Author and article information Development (2002) 129 (22): 5289–5300.

指の発生

https://blogs.cuit.columbia.edu/postdocsociety/2023/03/

Figure 1

https://www.nature.com/articles/cdd201311

BMPs are direct triggers of interdigital programmed cell death ...

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0012160615302037&psig=AOvVaw3qCn9BWEFinOa3eNpXTrAj&ust=1733497257045000&source=images&cd=vfe&opi=89978449&ved=2ahUKEwirmonT8pCKAxU_hVYBHUAfDwcQjhx6BAgAEBo

Vertebrate limb bud development: moving towards integrative ...

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fnrg2681&psig=AOvVaw1-txHm7BqoBdO_77zfX8Vu&ust=1733497575697000&source=images&cd=vfe&opi=89978449&ved=2ahUKEwjRlYLr85CKAxX3hVYBHfQmHMQQjhx6BAgAEBo

ニワトリの中胚葉誘導と神経誘導シグナリング

 

 

ArticlePDF Available Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo Save Related Papers Chat with paper March 1998Development 125(3):507-19 DOI:10.1242/dev.125.3.507

 

https://www.sciencedirect.com/science/article/pii/S0925477304001303

アフリカツメガエルの中胚葉誘導と神経誘導シグナリング

 

 

  1. Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis  Yi Ding, Diego Ploper, Eric A. Sosa, +5, and Edward M. De Robertis ederobertis@mednet.ucla.eduAuthors Info & Affiliations Contributed by Edward M. De Robertis, February 24, 2017 (sent for review January 17, 2017; reviewed by Juan Larraín and Stefano Piccolo) March 27, 2017 114 (15) E3081-E3090 https://doi.org/10.1073/pnas.1700766114 https://www.pnas.org/doi/full/10.1073/pnas.1700766114 
  2. The Xenopus homeobox gene Twin mediates Wnt induction of Goosecoid in establishment of Spemann’s organizer Micheline N. Laurent,, Ira L. Blitz, Chikara Hashimoto, Ute Rothbacher, Ken W.-Y. Cho Author and article information Development 01 December 1997 A dorsal determinant model for establishment of Spemann’s organizer in the dorsal marginal zone. Dorsal determinants, perhaps components of the Wnt signaling pathway, are localized in the vegetal hemisphere of the unfertilized egg (left). During normal development, fertilization triggers the displacement of these determinants toward the future dorsal side (top right). We propose that cells comprising the prospective dorsal mesoendoderm directly inherit these determinants which activate a Wnt-signaling cascade to establish Spemann’s organizer. Activation of a Wnt-signaling cascade leads to establishment ofXtwn expression in the dorsal marginal zone. Xtwn directly binds to the Wnt-responsive element of the gsc promoter (the PE), and in collaboration with activin/BVg1-like signals, activates expression of gsc. Treatments that inhibit cortical rotation (e.g. UV irradiation) result in ‘trapping’ of the dorsal determinants (lower right) in the extreme vegetal endoderm. As a consequence of the lack of distribution of dorsal determinants to the dorsal side, the entire marginal zone becomes specified as ventral mesoderm, no organizer is formed and dorsal-specific marker genes are not expressed ‘dorsally’. Xtwn expression is instead found in the vegetal pole region. Abbr: VM, ventral mesoderm; IM, intermediate mesoderm; Org, organizer.

アフリカツメガエルの受精後の表層回転

 

 

  1. Establishment of the Dorsal–Ventral Axis inXenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation Jeffrey R Miller a, Brian A Rowning a,b, Carolyn A Larabell b, Julia A Yang-Snyder a, Rebecca L Bates a, Randall T Moon a J Cell Biol. 1999 Jul 26;146(2):427–438. doi: 10.1083/jcb.146.2.427  https://pmc.ncbi.nlm.nih.gov/articles/PMC2156185/

BMP4とマウスの発生

 

 

  1. Temporal BMP4 effects on mouse embryonic and extraembryonic development Nature volume 634, pages652–661 (2024) Published: 18 September 2024 https://www.nature.com/articles/s41586-024-07937-5 figure 1

神経誘導に必要なシグナル経路:BMP、FGF、WNT

神経誘導に必要なシグナル経路はBMP、FGF、WNTのどれでしょうか?カエルやマウスやニワトリの論文をバラバラに読むと、いろいろなシグナルの重要性が報告されており、どれが本当のところ重要なのか整理がつきにくくなってきます。

動物種による違い

The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes.

The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module BMC Developmental Biology volume 11, Article number: 74 (2011)https://bmcdevbiol.biomedcentral.com/articles/10.1186/1471-213X-11-74

ニワトリ胚の神経誘導はカエルほど単純ではないようです。

In Xenopus, the release from the inhibitory, epidermal inducing signal bone morphogenetic protein-4 (BMP-4) by antagonizing secreted factors such as chordin, noggin, and follistatin, or by simple cell dissociation, seems to be sufficient to make ectodermal cells develop into neural tissue. Several lines of evidence in amniotes suggest a much higher degree of complexity. In the chick, inhibition of the BMP signaling pathway does not lead to neural differentiation, nor can BMPs prevent initial induction. However, antagonism between BMP-4 and chordin seems to play a role in controlling the extent of the neural plate once it is formed.

Cell Lineage and Fate Determination 1999, Pages 437-449 29 – More to Neural Induction Than Inhibition of BMPs Andrea Streit , Claudio D. Stern https://www.sciencedirect.com/science/article/abs/pii/B9780125052559500304?via%3Dihub

Consensus.aiに訊いてみました。

神経誘導に必要なシグナル:BMPかFGFか

神経誘導は、胚の外胚葉から脊椎動物の神経系を生成する最初のステップです。この過程において、BMP(骨形成タンパク質)とFGF(線維芽細胞成長因子)のシグナルがどのように関与しているかについて、多くの研究が行われています。

主要な知見

  • BMPの抑制が必要だが不十分

    • BMPシグナルの抑制は神経誘導に必要だが、それだけでは不十分であることが示されています。BMPの抑制は神経誘導の遅い段階で必要であり、他のシグナルも関与している可能性があります
  • FGFシグナルの重要性

    • FGFシグナルは神経誘導において重要な役割を果たしており、BMPの抑制と組み合わせることで神経運命の指定が行われます。FGFシグナルは、BMPシグナルの抑制だけでなく、独自の役割を持っています
  • BMPとFGFの相互作用

    • BMPの抑制とFGFシグナルは、Smad1のリン酸化を通じて相互作用し、神経誘導を促進します。これにより、BMPシグナルの抑制とFGFシグナルの活性化が統合され、神経誘導が行われます
  • モデル生物間の違い

    • Xenopus(アフリカツメガエル)やマウス、ヒヨコなどの異なるモデル生物において、BMPとFGFの役割が異なることが示されています。特に、XenopusではBMPの抑制が神経誘導に十分である一方、他のモデルではFGFシグナルが必要とされています

結論

神経誘導にはBMPシグナルの抑制が必要ですが、それだけでは不十分であり、FGFシグナルも重要な役割を果たします。これらのシグナルは相互に作用し、神経運命の指定を促進します。したがって、神経誘導にはBMPの抑制とFGFシグナルの両方が必要です。

  1. Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists BMP 阻害は神経誘導の最終段階でのみ必要であり、FGF および Wnt 拮抗薬以外のシグナルが関与します。 C. Linker et al.
  2. Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition アフリカツメガエルにおける神経誘導には BMP 阻害が必要ですが、それだけでは十分ではありません。神経運命の出現には前胚 FGF シグナル伝達が必要です。 Emilie A Delaune et al.
  3. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. 神経誘導は、Smad1 リン酸化を介した抗 BMP、FGF8、および IGF2 シグナルの統合によって生じます。 Genes & development E. Pera et al.
  4. BMP inhibition initiates neural induction via FGF signaling and Zic genes BMP 阻害は、FGF シグナル伝達と Zic 遺伝子を介して神経誘導を開始します。 Proceedings of the National Academy of Sciences Leslie Marchal et al. 127 Citations 2009 Info Highly Cited Ask this paper icon button Study snapshot Save Cite Share
  5. BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus. BMP シグナル伝達の阻害は、アフリカツメガエル胚の外胚葉組織片における神経誘導には十分ですが、結論には sox 遺伝子発現の解釈によって若干の矛盾が生じます。 Developmental biology A. Wills et al. 46 Citations 2010 icon button Study snapshot Save Cite Share
  6. BMP signalling inhibits premature neural differentiation in the mouse embryo BMP シグナル伝達は哺乳類の神経誘導において中心的な役割を果たしますが、FGF は着床後のマウス胚において神経誘導因子として作用しません。 Aida Di-Gregorio et al. 188 Citations 2007 Info In Vitro Trial Info Highly Cited icon button Study snapshot Save Cite Share
  7. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo FGF シグナル伝達は、ニワトリ胚における BMP 発現の抑制と神経運命の獲得に必要です。 Current Biology S. Wilson et al. 342 Citations 2000 Info In Vitro Trial Info Highly Cited icon button Study snapshot Save Cite Share
  8. FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction 鳥類の神経堤誘導には、胚葉形成中の神経堤上胚葉予定層内での FGF/MAPK シグナル伝達が必要である。 Development T. Stuhlmiller et al. 83 Citations 2012 Info In Vitro Trial Info Highly Cited icon button Study snapshot Save Cite Share
  9. The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module BMP 阻害と FGF シグナル伝達は、それぞれの遺伝子の発現に異なるシグナル伝達要件を伴い、互いに独立して神経遺伝子を誘導します。 BMC Developmental Biology C. Rogers et al. 19 Citations 2011 Info In Vitro Trial icon button Study snapshot Save Cite Share
  10. Regulation of Neural Specification from Human Embryonic Stem Cells by BMP and FGF FGF は、神経誘導のための BMP シグナル伝達とは独立して、ヒトの神経の特異性を強化します。 STEM CELLS T. Lavaute et al. 97 Citations 2009 Info In Vitro Trial Info Highly Cited

カエル

  1. 15 November 2012 BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border Development (2012) 139 (22): 4220–4231. https://journals.biologists.com/dev/article/139/22/4220/45624/BMP-Wnt-and-FGF-signals-are-integrated-through
  2. Development . 1996 Jun;122(6):1711-21. doi: 10.1242/dev.122.6.1711. Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox https://journals.biologists.com/dev/article/122/6/1711/39169/Regulation-of-dorsal-ventral-patterning-the

ニワトリ

  1. The acquisition of neural fate in the chick Mechanisms of Development Volume 121, Issue 9, September 2004, Pages 1031-1042 Mechanisms of Development Review https://www.sciencedirect.com/science/article/pii/S0925477304001303 
  2. Reciprocal Repression between Sox3 and Snail Transcription Factors Defines Embryonic Territories at Gastrulation Developmnetal Cell Volume 21, Issue 3, 13 September 2011, Pages 546-558
  3. Mechanisms of Development Volume 82, Issues 1–2, 1 April 1999, Pages 51-66 Mechanisms of Development Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity https://www.sciencedirect.com/science/article/pii/S0925477399000131

ゼブラフィッシュ

  1. Development . 2012 Nov;139(22):4220-31. doi: 10.1242/dev.081497. Epub 2012 Oct 3. BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border Aaron T Garnett 1, Tyler A Square, https://pubmed.ncbi.nlm.nih.gov/23034628/

神経堤細胞の誘導

 Post-transcriptional tuning of FGF signaling mediates neural crest induction Jacqueline Copeland and Marcos Simoes-Costa simoescosta@cornell.eduAuthors Info & Affiliations PNAS December 21, 2020 117 (52) 33305-33316https://www.pnas.org/doi/10.1073/pnas.2009997117

Brachuryとは?ブラキューリ?

カエルでの発現パターン

Comparison of Xbra reporter gene expression with that of the endogenous gene. (A) Time course of Xbra-2.1 expression compared with that of endogenous Xbra. Dorsal is upwards in all panels, except wild-type stage 9.5 (dorsal to the right). The colour reaction to detect reporter gene expression took 24 to 48 hours compared with 5 hours to detect endogenous Xbra. Reporter gene expression was restricted to the marginal zone in approximately 80% (n>150) of transgenic embryos. (B) Expression of endogenous Xbra RNA at stage 9.0. Left panel: animal pole view; right panel: side view. Embryos were cleared to visualise internal staining. Nuclear staining indicates newly transcribed zygotic RNA. Non-transgenic embryos stained for GFP RNA for the same time showed no expression (not shown). Weaker staining in the vegetal pole may be due to poor probe diffusion, but see the sectioned in situ hybridisations of Panitz et al. (1998). (C) GFP fluorescence of an embryo transgenic for Xbra-4.1. Note slightly weaker expression in the dorsal marginal zone (top right).

15 June 2000 Region-specific activation of the Xenopus Brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos Walter Lerchner, Branko V. Latinkic, Jacques E. Remacle, Danny Huylebroeck, James C. Smit

Brachyury Knockdown Phenotype in Xenopus

Brachyury (Xbra) is a crucial gene involved in mesoderm formation and notochord differentiation in vertebrates, including Xenopus. The following synthesis presents the key findings from multiple research papers on the phenotype observed when Brachyury is knocked down in Xenopus.

Key Insights

  • Failure in Gastrulation Movements:
    • Knockdown of Brachyury in Xenopus embryos results in the failure to complete gastrulation due to the loss of convergent extension movements, which are essential for proper morphogenetic movements .
  • Down-Regulation of Downstream Genes:
    • Brachyury knockdown leads to the down-regulation of its downstream genes, including Xwnt11, which is crucial for regulating gastrulation movements via the Dishevelled pathway, but not through the canonical Wnt pathway .
  • Morphological Defects:
    • Both genetic knockout (KO) and morpholino-mediated knockdown (KD) of Brachyury in Xenopus result in virtually identical morphological defects, indicating the critical role of Brachyury in early development.
  • Off-Target Effects and Immune Response:
    • Morpholino-mediated knockdown of Brachyury can induce off-target splicing defects and a systemic immune response, which can be mitigated but not entirely eliminated by optimizing morpholino dosage and incubation conditions.

Conclusion

Knockdown of Brachyury in Xenopus leads to significant developmental issues, primarily characterized by the failure of gastrulation movements due to disrupted convergent extension. This is accompanied by the down-regulation of key downstream genes like Xwnt11. While both genetic knockout and morpholino-mediated knockdown produce similar morphological defects, the latter can also cause off-target effects and immune responses. These findings underscore the essential role of Brachyury in early vertebrate development and the complexities involved in gene knockdown studies.

(consensus.ai)

  1. Highly conserved functions of the Brachyury gene on morphogenetic movements: insight from the early-diverging phylum Ctenophora. アフリカツメガエルの胚における Brachyury のノックダウンは、収束伸展運動の喪失により胚葉形成の完了に失敗する結果となる。Developmental biology A. Yamada et al. 49 Citations 2010
  2. Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus 対照または標的 MO を注入された胚は、全身の GC 含有量依存性免疫応答と多くのオフターゲットスプライシング欠陥を示します。 Developmental Cell George E. Gentsch et al. 41 Citations 2018
  3. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Xbra の転写活性化の妨害は、胚葉形成中の形態形成運動の阻害につながります。 Development M. Tada et al. 742 Citations 2000
  4. Cooperative non-cell and cell autonomous regulation of Nodal gene expression and signaling by Lefty/Antivin and Brachyury in Xenopus. アフリカツメガエルにおけるブラキュリ媒介転写抑制は、オーガナイザーおよび中内胚葉組織のさらなる拡大につながり、背側の特異性に影響を及ぼします。 Developmental biology Y. R. Cha et al. 33 Citations 2006
  5. The Brachyury gene encodes a novel DNA binding protein. Brachyury 変異胚は中胚葉形成が不十分で、体軸の発達が完了せず、脊索が最も影響を受けます。 The EMBO Journal A. Kispert et al. 364 Citations 1993
  6. In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Brachyury の体内でのノックダウンは、胎児の尾部退縮症候群に似た骨格異常および尿直腸奇形を引き起こします。 Developmental biology T. Pennimpede et al. 50 Citations 2012
  7. Goosecoid and mix.1 repress Brachyury expression and are required for head formation in Xenopus. goosecoid または mix.1 の機能が阻害されると、Xbra が一時的に異所的に発現し、背前部異常や心臓および腸管の形成異常が生じます。 Development Branko V. Latinkić et al. 116 Citations 1999
  8. Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction Brachyury のアフリカツメガエル相同遺伝子である Xbra は、胚葉口周囲の予定中胚葉細胞で発現し、その後脊索で発現します。 Cell James C. Smith et al. 1,030 Citations 1991 本文有料

原始結節nodeを移植すると二次の体軸が形成されるという実験報告論文

Consensus.aiによるまとめ。

Introduction

The transplantation of the node, a critical embryonic structure, has been studied for its ability to induce ectopic body axes in both mice and chicks. This research explores the node’s role in axis formation and its potential to organize and pattern embryonic development when transplanted to non-native locations.

Key Insights

  • Induction of Ectopic Neural Axis in Mice:
    • Transplanting the mouse node to a posterolateral location in a host embryo induces a second neural axis and ectopic somites. The graft predominantly forms notochord and endoderm, while the host contributes to neurectoderm and somites.
  • Induction of Ectopic Axis in Chicks:
    • Hensen’s node in chick embryos can induce a complete embryonic axis, including a fully patterned central nervous system, when transplanted to an ectopic site. This includes host-derived neural tissue.
  • Role of Node in Axis Formation:
    • The mouse node is crucial for the formation of the notochord, floor plate, and gut endoderm. Its ablation leads to the recruitment of surrounding tissues to restore the neural tube and paraxial mesoderm, although the body axis may be foreshortened and somite formation delayed.
  • Synergistic Activity in Axis Induction:
    • In mice, the combination of the early gastrula organizer (posterior epiblast), anterior visceral endoderm, and anterior epiblast is necessary to induce anterior neural structures and form an ectopic axis. The anterior germ layer tissues alone do not act as a classical organizer.
  • Molecular Mechanisms in Chicks:
    • The protein Tsukushi (TSK) in chicks inhibits BMP signaling, which is essential for the formation of Hensen’s node and the induction of an ectopic node when combined with the middle primitive streak.

Conclusion

The transplantation of the node in both mice and chicks can induce the formation of ectopic body axes, demonstrating its critical role in embryonic patterning. In mice, the node primarily contributes to the notochord and endoderm, while(全然対比になっていない。。) in chicks, Hensen’s node can induce a complete axis including neural tissues. The induction of anterior neural structures in mice requires a combination of specific germ layer tissues, highlighting the complexity of axis formation. Molecular mechanisms, such as BMP inhibition by Tsukushi in chicks, further elucidate the processes involved in node-induced axis formation.

名前が似ているけどnorrin とnogginは全く別の遺伝子

nogginは有名ですがnorrinは初めて知りました。まさかミスプリじゃないよねと思ってChatGPTで確認したところ、もちろん別の遺伝子でした。

質問:norrinとnogginは同じものですか?

No, Norrin and Noggin are different genes with distinct functions and roles in development.

Key Differences between Norrin and Noggin:

  1. Noggin:
    • Gene Symbol: NOG
    • Function: Noggin is a secreted protein that acts as an antagonist of BMP (Bone Morphogenetic Protein) signaling. It binds to BMPs and prevents them from interacting with their receptors, which helps to regulate dorsal-ventral patterning during early embryonic development.
    • Role in Development: Noggin is crucial for neural induction and dorsalization of mesoderm, particularly in the context of vertebrate development. It is one of the organizer molecules discovered in studies on Spemann’s organizer.
    • Pathways: It primarily modulates TGF-β family signaling, including BMPs.
  2. Norrin:
    • Gene Symbol: NDP (stands for Norrie Disease Protein)
    • Function: Norrin is a secreted signaling molecule that functions as a ligand for the Frizzled-4 (FZD4) receptor in the Wnt/β-catenin signaling pathway.
    • Role in Development: Norrin is primarily involved in the development of the retina and inner ear. It plays a critical role in vascular development, especially in the retina and blood-brain barrier. Mutations in the NDP gene are associated with Norrie disease, which leads to blindness and other developmental issues.
    • Pathways: Norrin functions through the Wnt signaling pathway, specifically by binding to Frizzled-4 and LRP5/6 to activate β-catenin signaling.

Summary:

  • Noggin is involved in BMP inhibition and dorsal-ventral patterning during embryonic development.
  • Norrin is involved in Wnt signaling, particularly in the context of vascularization and retinal development.

They are distinct genes with different roles and mechanisms in development, even though their names sound similar.